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Executive Summary 
 

This document provides a report of the Big Data Analytic (BDA) engine of the EVOTION platform, the 

subcomponents composing the system, the mechanisms that it provides to enable a tight integration with 

the EVOTION data repository by exploiting native technology, and an integration based on application 

interfaces with other EVOTION subsystems. 

The overall design of the BDA engine was informed by an architectural model called Lambda Architecture, 

which consists of three layers, respectively for processing batch data, for computing incremental data 

updates, and for aggregating views on data. This architectural model satisfies the requirements of the 

EVOTION BDA and provides the flexibility needed to accommodate the heterogeneity of runtime 

environments. Relevant design concepts are described in this document, like the notions of Workflow 

Catalogue and Task Catalogue, with corresponding entities called Data Analytic Workflow (DAW) and 

Executable Data Analytic Workflow (EDAW), which are at the core of the overall engine design and 

management of EVOTION data analytic processing.  

The BDA implementation is described in terms of technology stack adopted from the open source Apache 

family of solutions for big data processing, and as specific solutions realized, for instance to process EDAWs, 

to manage Workflow and Task catalogues, to interact with external applications like the Ontology Reasoner 

or the DSS. In addition, the EVOTION BDA Engine is also structured to be compatible with the H2020 

TOREADOR Methodology for fast roll-out of big data analytics, and the EVOTION BDA engine is capable of 

executing TOREADOR based analytics for fast prototyping and extension of EVOTION workflows. 

Specific technologies are presented in their key characteristics and discussed with respect to features and 

limitations. Where possible, alternatives have been presented with the rationale that guided our final 

selection.  A section with some use cases serves the purpose of presenting EVOTION scenarios where the 

BDA engine is processing data and producing results. Some examples of implemented Tasks and Executable 

Workflows are also presented in the appendix A. These examples are mainly to show some of the 

characteristic of the BDA Task and Workflows in relation to EVOTION scenarios.  

A section specifically devoted to highlight security and privacy issues has been produced. First a threat model 

for the BDA engine is presented, compliant with the overall threat classification adopted in EVOTION. Then, 

security objectives and functionalities have been specified to match the selected threats.  

Finally, we wish to specify that the EVOTION BDA is structured to be compatible with the H2020 TOREADOR 

Methodology for fast roll-out of big data analytics. More specifically, the EVOTION analytic workflows 

execution can be triggered with the TOREADOR methodology given the transformation between the 

EVOTION Language and Models in WP3 and WP4 to the TOREADOR workflows. This transformation will be 

implemented as part of the WP4 Transformation tool. 
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1. Component overview 
The Big Data Analytic Engine (in the following, BDA), is a central component of the EVOTION platform, mainly 

focused on the execution of policy model's instances over the data collected during the EVOTION clinical trial 

and aimed at supporting policy makers in the definition of Public Health Policies (PHP). The execution of 

policy model instances is based on the definition of Data Analytic Workflows (DAWs) according to the PHP 

language developed in WP4 and PHP models of WP3.  

A DAW is an ordered sequence of Data Analytic Tasks (just Tasks in the following) of the following types: 

• Data Processing task: focused principally on data preparation like data source selection for 

feature reduction, data cleaning, or data type transformation. 

• Statistical Analysis task: focused on performing statistical analysis on a given dataset like ANOVA, 

Breusch-Pagan Test, etc. 

• Data Mining task: focused on more elaborated analysis (e.g., clustering, machine learning) 

involving supervised or unsupervised algorithms like Random Forest, K-means, etc. 

The output of one DAW could be the input of a consecutive one. For instance, one DAW can implement a 

PCA to select features, and the consecutive one can use the output to compute classification.  

The peculiarity of DAWs in EVOTION is that they could mix automatic and human actions. Stakeholders, like 

policy makers or clinicians, could be part of a workflow when, supported by the EVOTION DSS, could request 

and specify consecutive refined analysis. 

A DAW is expressed as a detailed procedural workflow and requires to be translated into executable form 

for the BDA Engine (Executable DAW, in the following, EDAW). This transformation is carried out by the 

PHPDM Transformation tool that will be developed in Task T4.3. The BDA Engine presented in this deliverable 

is compatible with H2020 Toreador1 workflows (Damiani at al., 2017). H2020 TOREADOR is one of the biggest 

Big Data project funded by EU focused on providing Model-based Big Data Analytics as a Service. This 

compatibility allows to use TOREADOR methodology for the fast prototyping and deployment of analytics on 

the EVOTION platform. 

In this section, we summarize the EVOTION platform architecture emphasizing the role of the BDA Engine 

component. We first briefly recap the set of requirements driving its definition and development starting 

from those defined in deliverable D2.1 (Dimakopoulos et al., 2017). We then introduce the architecture 

presented in deliverable D2.2 (Ye et al., 2017) focusing on the components strictly related to the BDA Engine. 

We finally present an overview of the BDA internal architecture and interfaces.  

1.1 Big Data Analytic Engine requirements 
Deliverable D2.1 presented a list of requirements elicited from the EVOTION scenarios. They are generically 

related to the EVOTION platform as a whole or to the Mobile App. A list of preliminary relevant functional 

requirements for the BDA was also presented in D2.1. We recap the ones related, directly or indirectly, to 

the BDA in the following Table 1.  

  

                                                           
1 http://www.toreador-project.eu/ 
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Table 1: List of EVOTION functional requirements relevant for the BDA.  

Functional req. ID Description  Priority of accomplishment 

FR(PHAS)2  Discover factors of low HA usage  Must have  

FR(PHAS)6  Characterize data to define the size of the 
dataset  

Should have  

FR(PHAS)7  Support different types of data analysis  Should have  

FR(PHAS)8  Support different types of data tests  Should have  

FR(PHAS)9  Produce and manage metrics for quality of 
analysis  

Could have  

FR(PHAS)10  Initiate data analysis session  Must have  

FR(PHAS)11  Administrate (create, update, delete) 
analysis’ outcomes  

Must have  

FR(PHAS)12  Notification of analysis completion  Must have  

FR(PHAS)14 Suggest factors of analysis’ outcome Must have 

FR(PHAS)15 Re-analysing a specific dataset with different 
factors 

Must have 

FR(PHAS)16  Data analysis, in a statistical way, between 
different data types  

Should have  

FR(PHAS)17 Support multiple types of analysis’ criteria Must have 

FR(PHAS)18  Support of progressive notifications and 
storing of outcomes on data analysis  

Should have  

FR(PHAS)24 Identification of the resulting tense and 
generation of a potential policy model for 
implementation 

Should have 

FR(PHAS)26  Stop the relevant analytic activity  Must have  

FR(CLIS)36  Correlation of HA usage with collected noise 
data  

Should have  

FR(CLIS)37  Manage HA usage with problems occurred, 
ratings provided and corresponding noise 
recorded  

Could have  

FR(CLIS)38  Different visualization modes of recorded 
data  

Should have  

FR(CLIS)42  Analyse END or BHD parameters and 
automatically respond to them by changing 
the fitting profile  

Must have  

FR(CLIS)48  Manage and visualize a detected event 
record  

Should have  

FR(CLIS)59  Visualize TTS/NIHL data recorded for a 
selected patient  

Must have  

FR(CLIS)60  Provide aggregated records of TTS episodes 
from patients from retrospective studies  

Must have  

FR(CLIS)61  Analyse data and suggest combination of 
factors affecting TTS and NIHL episodes  

Must have  

FR(CLIS)75  EVOTION platform deployed on the cloud  Should have  

FR(CLIS)77  Visualize aggregated data sets  Must have  

FR(CLIS)78  Visualize HA usage data with respect to 
various noise parameters  

Must have  
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FR(CLIS)82  Analyse the responses to the auditory 
training tests  

Must have  

FR(CLIS)95  Analyse captured events from the patient’s 
devices in relation to the patient responses in 
the questionnaires  

Could have  

FR(CLIS)100  Compare sensors’ data and data collected 
from HAs  

Must have  

FR(CLIS)103  Analyse sensors’ and HAs’ data  Must have  

FR(PSOS)139  Determine combination of factors (noise 
levels, duration of exposure, other 
physiological data) associated with TTS/NIHL 
episodes  

Must have  

FR(PSOS)144  Analyse issues, concerns and problems with 
hearing aid reported by HA users  

Must have  

 

In addition and related to the above generic scenarios-elicited requirements, in Table 2 we also define BDA 

specific requirements as follows. 

Table 2: List of new functional requirements specifically defined for the BDA. 

Functional req. ID Description  Priority of accomplishment 

FR(BDA)1  Batch processing capabilities Must have  

FR(BDA)2  Micro batch processing Could have  

FR(BDA)3 Provide implementation for Processing, 
Statistical and Data Mining tasks needed for 
the scenarios 

Must have 

FR(BDA)4 Direct connection to Data storage system 
(EVOTION Data Repository) 

Must have 

FR(BDA)5 Cataloque of available EDAW (obtained after 
the PHPDM Transformation) 

Should have 

FR(BDA)6 Workflow orchestrator  Should have 

FR(BDA)7 Tracking of Workflow status, including 
intermidiate tasks. 

Must have  

FR(BDA)8 Catalogue of available tasks that can be used 
to compose a workflow 

Must have 

FR(BDA)9 Ability to execute scheduled workflows Could have 

FR(BDA)10 Predefined EDAWS for supporting scenarios 
for Clinical and Patients like the ones 
requiring FR(CLIS)36, FR(CLIS)42. 

Must have 

FR(BDA)11 Provide administrative Dashboard to deploy 
and set up tasks and workflows 

Should have 

FR(BDA)12 Provide interfaces to the rest of EVOTION 
architecture to support all the requirements 
in an integrated fashion 

Must have 

 

The above generic requirements as well as the ones elicited from the scenarios drive the definition of the 

EVOTION BDA.  
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1.2 Overall EVOTION Architecture: The role of the Big Data Analytic Engine 
Let us consider a subsystem of the EVOTION Architecture defined in deliverable D2.2 and depicted in Figure 

1. This subsystem contains the BDA and the components cooperating with the BDA for the definition and the 

execution of a given workflow. They are defined in deliverable D2.2 as follows: 

• BDA engine: it mainly addresses the functionalities required for processing EDAWs and 

providing/storing execution results. 

• Data Repository: it provides the storing facilities for EVOTION data, either retrospective data, or new 

data collected during the clinical trial. It directly interacts with the BDA Engine allowing the execution 

of analytic tasks. 

• Ontology Reasoner: It is responsible for finding a semantic structure in the ontology representing a 

PHPDM model. It provides an interface to query the ontology and allows other components to 

update or create an ontology. 

• Decision Support System: The purpose of the Decision Support System (DSS) is to provide data 

retrieval and summarization functionalities for text-mining related tasks, aimed mainly at PHPDM 

makers and clinicians to define and produce decision-related scenarios, based on information 

produced by the EVOTION platform and external sources as well. 

• PHPDM Transformation tool: It takes a policy model instance defined by the PHPDM Specification 

tool and transforms it into a procedural set of commands that the BDA Engine should execute. 

• Mobile App: It is used in the data gathering process of the EVOTION platform. It is the tool that 

collect information from the EVOTION HAs and biosensors, the environment and directly from 

patients. It is the main way of interaction with EVOTION patients enrolled in the clinical trial by 

getting input from them as well as serving them with relevant information. 

• Front-End Dashboard:  The purpose of this module is to provide a user-friendly visualization interface 

for policy makers and clinicians and allow them interacting with the EVOTION platform. 

• Security Manager: It provides security features to the EVOTION platform like 

authentication/authorization, encryption to name but a few. 
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Figure 1 the architecture overview of the EVOTION platform: Principal components connected to the BDA 

 

With regard to the technologies adopted for BDA development, they belong to the same Apache ecosystem 

used for the Data Repository. While in EVOTION the BDA and the Data Repository are considered two 

separate components, they are tightly integrated in the implementation and could exploit native features of 

the common technological framework.  

More in general, as depicted in Figure 1, the BDA interact mainly with i) Ontology Reasoner to update 

ontological model instances, ii) PHPDM Transformation tool to receive an EDAW to be executed, iii) Data 

Repository to execute the analytics on stored data, iv) Mobile App to support HA user profile changes, iv) 

Dashboard to provide feedbacks about the status of a running EDWA and visualizing results, v) DSS to notify 

the completion of a EDWA, or to trigger one if needed. 

In addition to the above architectural components, communication mechanisms have been developed 

focused on handling internal communication.  

• Enterprise Service Bus (ESB): It provides the communication mechanisms between design 

components and implements data transformation between the EVOTION components. 
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• Message Bus: Provides a flexible mechanism to establish event driven communication channels 

between components. Each component can subscribe to a channel / topic and consume events that 

are sent over the Message Bus. Using Message Bus, a component can choose if it is necessary to re-

act when a message arrives and, using the same channel, notify other components for this action. 

1.3 Big Data Analytic Engine Component 
The BDA Engine is based on a set of sub-components (see Figure 2) to fulfil the requirements specified in 

Section 1.1. Those subcomponents, that will be detailed in following Section 2, are: 

• BDA Infrastructure:  Big Data Processing infrastructure based on Apache Hadoop framework 

enhanced with additional components, like Apache Oozie, to support analytic workflow execution 

and libraries to supports statistical and data mining tasks, such as Mlib (requirements FR(BDA)1-4). 

• Task Catalogue: list of Tasks (i.e., Processing, Statistical and Data Mining) for which an executable 

implementation is available in the BDA. For instance, the Task Catalogue will include Spark_ANOVA 

as an implementation of a task ANOVA defined in the PHPDM model instance (requirement 

FR(BDA)3, FR(BDA)8). 

• Workflow Catalogue: list of EDAWs related to a corresponding PHPDM policy model instance. 

These workflows are composed of tasks appearing in the Task Catalogue and a coded logic driving 

the task execution. An EDAW can be scheduled according to PHPDM preference (requirements 

FR(BDA)5-7 and FR(BDA)9 and FR(BDA)10). It contains also a set of pre-defined EDAWs that are not 

derived from a PHPDM model instance, but are needed to cope with clinical specific scenarios. 

• Management/Catalogue Backend: management backend for the BDA Infrastructure based on 

Ambari and for the Task and Workflow catalogues. It is used mainly for administrative management 

of the BDA Engine and Catalogues management (requirements FR(BDA)11). 

• API Module: RESTFUL APIs for the EVOTION components interacting with the BDA (requirements 

FR(BDA)12). 

These components are fundamental to provide the capability to process a DAW in the EVOTION framework. 

As a general remark, the idea is to keep the DAW in the PHPDM model instance as much generic as possible 

and deal with implementation details within the BDA Engine 

 

Figure 2: BDA Engine components 
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1.4 Definition and Execution of a DAW 
Let us consider the process of defining and executing a DAW. A PHP policy model instance is defined through 

the PHPDM Specification tool by instantiating a PHPDM policy model. A PHPDM policy model instance is 

defined by means of the EVOTION declarative PHPDM language and of semantic definitions maintained by 

the Ontology Reasoner. It includes specification of tasks related to a DAW that needs to be transformed into 

an EDAW to be executed by the BDA engine. 

 

Figure 3: Architectural details of Big Data Analytic Engine interactions for DAW execution. 

This operation is carried out by the PHPDM Transformation tool that takes a PHPDM policy model instance 

DAW, interacts with the BDA Task Catalogue to retrieve implementation details at task level, with the 

Ontology Reasoner to resolve semantic relationships, and then produce an EDAW to be stored into the 

Workflow Catalogue. The execution of the EDAW is then managed by a scheduler process and its evolution 

is notified by the BDA to the interested components, namely the Dashboard for feedbacks on the EDAW 

status and final results visualization, and the Ontology Manager to update the model of the given PHPDM 

model instance for instance locating the results of its execution. 

We note that some EDAWs are not derived from a specific PHPDM policy, instead they are defined to support 

other scenarios like clinical and patient related scenarios. In that case, the EDAW is pre-defined and 

preloaded and can be triggered with parameters to tune their behaviour. The compatibility with TOREADOR 

mostly impacting on the capability of design these pre-defined EDAWs which are not model-driven by 

construction like the PHPDM ones, but that require modelling supports as well to provide fast prototyping. 

We also note that tasks for PHPDM related EDAWs and pre-defined EDAWS will be continuously developed 

during the evolution of the project in the framework of WP4 Transformation Tool and WP3 Models. 
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2. Design 
In this Section, we detail the design of each BDA sub-component defined in Section 1. We first revise the 

technologies that can be adopted for the BDA Engine and then we define how we structure our infrastructure. 

Finally, we present all the other sub-components constituting our BDA Engine. 

2.1 EVOTION BDA Architecture 
Given the BDA architecture presented in deliverable D2.1 and the requirements discussed in previous Section 

1, we have designed the BDA infrastructure based on a tightly integrated set of tools developed by the 

Apache ecosystem.  

The BDA Engine modular architecture integrates software tools and libraries selected from a rich open 

source, Big Data ecosystem having a large user-base and often employed in projects with characteristics and 

requirements similar to EVOTION.  

More specifically, the BDA Engine will deal with a wide diversity of modern runtime environments. On top of 

such heterogeneous service architecture, an Orchestration interface (i.e., Task and Workflows Catalogue and 

the API module) has been deployed to maintain a runtime independent deployment logic.  This way, 

procedures to deploy and manage the lifecycle of BDA's services can be delegated to runtime policies 

implementations. 

In the following, we will be exploring the BDA Run Time Environment (RTE) architectural layouts, and what 

use cases will fit most with each one, along with an analysis of RTE tools.  

In particular, the underlying technology composing the RTE should be flexible enough to support batch 

processing (mainly for policy making process) but also extendible to handle speed processing if needed 

(mainly to predict but also to update models given the availability of additional data). Therefore, given the 

two popular architectures Lambda and Kappa (initial review in D2.1), in the following we present the most 

suitable one for EVOTION, the Lambda Architecture. 

2.1.1 Lambda Architecture 
The Lambda Architecture (Grover et al 2015), consists of three layers: Batch, Speed, and Serving layer. 

• The Batch layer merges incoming data to historical data and reiterates the procedural workflows on 

the combined data input to produce the results. The accuracy of batch views, comes at the cost of 

high latency, therefore Lambda Architecture must also be able to compute incremental updates via 

Speed layer to enhance the responsiveness. 

• The Speed layer takes as input the new data in the form of either micro-batches (small chunks of data 

ingested on a regular basis) or single records, and the last update of batch data output. This implies 

that a requirement for algorithms to run in the Speed layer is to be able to process data 

incrementally. 

• The Serving layer is composed by some ad-hoc low-latencies queries on indexed data resulting from 

the output of batch and real-time views to provide an aggregate view of both batch and speed layer 

data, resulting as a suitable interface for reporting and visualization tasks. 

With both the Batch and the Speed layers, one of the problem to address is to synchronize them for 

preventing data redundancy or data loss. To address this problem, a solution has been proposed based on 

data tagging, tracking of delivery time, and selection of information that can be removed from speed data 

views, when batch processes produce results. 
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Selecting the correct architectural layout may depend on the application use case. For instance, 

recommender systems often make large use of machine learning techniques, like collaborative filtering via 

Matrix Factorization (MF) (Koren et al., 2009). In this case, to compute the MF matrix over all the historical 

data, some algorithms, like ALS, need to recursively process historical data, whenever new data chunks are 

delivered, while other algorithms are able to speed up the computation by incrementally update the MF 

models, at the cost of reduced precision, by providing an approximated result, with respect to the MF matrix 

calculated with ALS. 

In this example, choosing a Lambda architecture layout is highly beneficial, since two different codebases 

could be used for Speed and Batch layers, as a trade-off between low latency (Speed layer) and high accuracy 

(Batch layer) in computing data views. 

As a remark, EVOTION BDA is not handling Real Time/Near Real Time processing tasks only, like record level 

validation, window averages, counting and storing states, or even machine learning analytics having a native 

implementation like streaming linear regression in Spark MLlib.  Other architectures focused on streaming 

layer (e.g., Kappa architecture), even if largely adopted and usable to obtain similar functionalities, are not 

perfectly tailored for the EVOTION BDA. 

2.2 Big Data Runtime Environment 
Figure 4 shows a Big Data Runtime Environment implementing Lambda architecture. In architectural view 

the Distribution Layer is added in order to deliver data to the processing part of the architecture. 

2.2.1 Distribution Layer 
Every time raw data is delivered to a BDA Distribution Layer, the process of ingesting data may involve several 

storage options depending on the size of data batched to be processed per time unit. One key factor to 

consider, when batches of raw data to be processed require large portions of storage and long-term historical 

data must be stored, is the optimization the data format for splittable compression. Other aspects to discuss 

are how data are updated when imported and how it is accessed. For instance, HDFS implements the "write 

once read many" paradigm, allowing no further update after the file has been created. Data is usually 

appended into "delta files" containing the incremental updates of last data batches imported. Having many 

small delta files inside the directories could require the execution of a specific process to merge files to 

reduce the overhead of read operations. This process is typically also able to produce an optimization by 

detecting records with the same key across the delta files and keep only the updated version records when 

merging delta files.   
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Figure 4: Big Data Runtime Environment 

 

Considering the ingestion functionality of the distribution laver, different factors must be considered. One of 

the most relevant is data ingestion timeliness, namely the “time lag from when data is available for ingestion 

to when it’s accessible to processing tools in the BDA ecosystem”. A common classification for timeliness is:  

1. Macro batch: Processes ingesting data from 15 minutes to hours.  

2. Micro batch: Ingestion with data delivery time ranges of 2 to 15 minutes, often configured to 

continuously supply small amount of data to be asynchronously consumed and processed by short 

living processes. 

3. Near Real-time Decision support: This is considered to be immediately actionable by the recipient of 

the information, with data delivered in less than 2 minutes but greater than 2 seconds.  

4. Near Real-time event-processing: This usually refers to single events per time, processed in a time 

range going from 100ms to 2 seconds.   

5. Real Time: It imports and processes single events per time and usually occurs in a period no longer 

than 100ms  

Along with ingestion timeliness there are several factors to consider for choosing a suitable ingestion tool, 

we are referring to some of them in the following Table 3. 

Table 3: Ingestion tools 

 Tool Fault tolerance Parallel ingestion Transformation Timeliness Sources Security 

File 
Transfer 

None (all or 
nothing) 

Single-threaded Only after 
landing in HDFS 

Batch External 
File 
System 

SSL 

Sqoop Map tasks 
commit 
transactions 
periodically, 
resulting in a 
partial 
import/export 
up to the last 
commit 

Using MapReduce 
Mappers to write a 
portion of the table 
to HDFS, loading 
multiple tables in 
parallel 

Only after 
landing in HDFS 

Batch RDBMS SSL 
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Kafka Kafka replicates 
data to 
partitions, the 
level of fault 
tolerance is 
highly 
customizable, 
tuning in favour 
of availability or 
replicas 
consistency  

Partitioned topics 
supply multiple 
consumer tasks in 
parallel 

Only as data 
source for a 
streaming 
engine like 
Spark Streaming 
or Storm 

Batch to RT  No native 
source 
nor sink 
implemen
tation 
provided, 
but 
extreme 
pluggabili
ty thanks 
to 
pub/sub 
interfaces
. 

SSL and 
Kerberos  

Flume Supports 
splitting data on 
ingestion to 
feed a backup 
cluster 

Flume supports 
multithreading and 
allows to tune up 
the fan-in with 
multi-agent 
ingestion 

Supports low 
latency 
processing with 
interceptors 

Near Real 
Time Event 
Processing/
Real Time 

Spool 
Directory, 
HTTP, 
JMS, 
AVRO and 
many 
others 

SSL 

  

Table 3 shows some of the prominent ingestion tools and their peculiarities in terms of i) fault tolerance 

capability, ii) parallel ingestion method (single or multi thread), iii) data transformation modalities during the 

acquisition phase, iv) timelessness (batch/ real time /near real time process, v) acquisition sources supported 

and vi) security features. More details in the following. 

• File Transfer is simply an ftp-based transfer protocol. 

• Sqoop is made for efficiently transfer bulk data between HDFS and structured datastores such as 

relational databases.  It supports incremental loads of a single table or a free form SQL query as well 

as saved jobs which can be run multiple times to import updates made to a database since the last 

import. Imports can also be used to populate tables. 

• Kafka is the most customizable ingestion tool listed in Table 3, due to its simplicity. It is a distributed 

publish/subscribe message broker with implicit portability for real time and batch business 

applications.                                                    

It works as a tool to manage streaming and operational data via in-memory analytical techniques for 

obtaining real-time decision-making. Kafka has persistent messaging, high-throughput, support for 

distributed processing, and support for parallel data load into Hadoop. Kafka combines off-line and 

on-line processing to provide real-time computation and produce ad hoc solution for these two kinds 

of data. Its streams API allows an application to act as a stream processor, consuming and producing 

input/output streams. It is mainly used in combination with other framework e.g. for building 

Lambda architecture. 

• Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, 

and moving large amounts of streaming data into HDFS. It has a simple and flexible architecture 

based on streaming data flows; and is robust and fault tolerant with tunable reliability mechanisms 

for failover and recovery. YARN coordinates data ingest from Apache Flume and other services that 

deliver raw data into an Enterprise Hadoop cluster. 
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We note that the ingestion in this case is the ingestion operation internal to BDA, not external ingestion from 

other sources of data. External ingestion is carried out by the EVOTION Data Repository. We also note that 

current scenarios of EVOTION, as they are provided in D2.2, are focused mainly on macro and rarely on micro 

batch. 

The ingestion of data can provide pre-processing capabilities offered by the above tools that includes: 

• Clean selected data for better quality  

• Treat missing values  

• Identify or remove outliers   

• Resolve redundancy caused by data integration  

• Correct inconsistent data  

• Flatten nested data formats to table formats 

• Ordering 

There is no silver bullet to accomplish these tasks without any ad-hoc transformation tailored to the data 

format and the nature of the discrepancies found.  Discrepancies in a dataset may occur for many reasons, 

including failures during the ingestion process, data integration of different sources, and could result in 

anomalies not easy to find.  

The adoption of data quality analysis tools allows to automatically detect many discrepancies in data. Apache 

Pig is the standard Hadoop script interpreter used for data quality in the pre-processing phase.  

Anomaly detection and transformation processes are usually reiterated until no discrepancy is found in the 

dataset. Assuming that the process would take minutes to hours in a large data set, and would require some 

forms of human intervention (a common situation), a better approach called “Potter’s Wheel Framework” 

could be applied. Its principle is to reduce the amount of human interaction by incrementally applying 

discrepancy detection upon the records displayed to a user. 

2.2.2 Analytics processing 
As we have illustrated in Section 1, Lambda architecture is the preferred choice when we want to achieve a 

compromise between low latency and accurate batch calculations. Therefore, according to the Lambda 

architecture speed and batch processing should be considered. 

This duality generates an important side effect  for  the Lambda architecture which is code reusability. This is 

an important feature to consider since it Lambda architecture requiring to maintain a double codebase, for 

streaming and batch operations. In EVOTION, batch and streaming workflows are in most of the cases 

disjoint, therefore this issue is less strategic. A more crucial aspect is the orchestration and synchronization 

of analytic tasks and workflows. 

Orchestration of Analytics  

While a big data processing is made of composition of different processing activities, an orchestrator is 

required to organize the processing workflow. The orchestrator manages the deployment of a generic BDA 

workflow to a target runtime environment, thus distributing computations and managing the resource 

consumption of the cloud infrastructure.  

In general, the orchestrator is a sort of processing manager that may also take care of resource consumption 

while scheduling executions of workflows. It should take care of the following aspects: 
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• Resource Management: The amount of CPU, disk and memory reserved to every application process. 

This feature should be also able to monitor the health state of the system by measuring some specific 

resource metrics like: 

o utilization as the amount of time that the resource is busy, or the amount of resource 

capacity that is in use. 

o saturation as the measure of the amount of requested work that the resource cannot 

yet service, often queued. 

o errors representing internal errors related to a resource. 

o availability as the amount of time that the resource is available to respond to requests.  

• Fault tolerance: Recover applications from downtime by maintaining the state.  

• Security: Securing connections to end-points, and data encryption.  

Lifecycle management is another relevant aspect, involving concepts like versioning, register deploy and 

removal, monitor active processes and managing their interruption. Two of the prominent tools working in 

the Apache ecosystem are the following. 

• Spring Cloud Dataflow is a cloud-native Orchestration Service that aims to implement the key 

functionalities just described and to perform orchestration tasks sending commands via Service 

Provider Interface. It interacts with modern cloud infrastructure runtimes including: Apache YARN, 

Cloud Foundry, Apache Mesos, Kubernetes.  

• Oozie is a largely used orchestration tool that covers the Apache Hadoop native ecosystem, and 

specifically designed for batch operations. It is not feasible to be used as a universal orchestration 

descriptive language, but still cover simple batch scheduling functionalities which are always 

required for handling orchestration of analytics. 

Tasks composition patterns include sequential and parallel flows, failure handling, and decision nodes and 

they can be orchestrated by using Apache Oozie. Task execution design patterns include fan-out, point to 

point, capture or decide. 

 

Figure 5: Point To Point workflow design pattern. 

Point-to-point is common when some actions must be executed sequentially, e.g. Performing aggregation on 

data using Hive and if this process succeeds export it to RDBMS using Sqoop. 
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Figure 6: Fan-Out workflow design pattern. 

  

Fan-out workflow pattern, also called fork-and-join pattern, runs some preliminary statistics, then executes 

several parallel tasks to fetch batches of result data from queries across different tables. It finally performs 

an aggregation task only if all the computations are performed with no errors. EVOTION platform is able to 

deal with the above patterns for handling its workflows. 

2.3 BDA Analytic Ecosystem 
 BDA deals with High Performance Computation (HPC), which is a research field focusing on providing large 

processing capability by increasing parallelization and executing parallel tasks on top of a set of traditional 

computers communicating with each other. In the following, we introduce relevant tools for batch/micro 

batch data analytics. 

2.3.1 Hadoop HDFS and MapReduce 
The rise of Big Data research could be identified in the publication of two seminal papers from Google: one 

describing a distributed file system with fault tolerance capabilities (called Google File System) and another 

describing a distributed processing framework called MapReduce. The two systems were developed to tackle 

the problem of storing the index of the crawled webpages and the ability to recalculate the index in a timely 

fashion,as a batch process running during low traffic hours (Grover et al 2015-2).  

The Hadoop2 ecosystem was initially developed at Yahoo as an extension of Apache Nutch3 (an open source 

web crawler) with the intention to implement the systems described in the two Google papers. In 2006, the 

Hadoop project became independent from Nutch and was released as an open source Apache incubator 

project. Initially the distributed file system and the processing framework were part of the Hadoop project, 

and later on, in 2009, were divided as different subprojects respectively named Hadoop Distributed File 

System (HDFS) and Hadoop MapReduce. 

Since the release of the first version, a fast increasing number of companies adopted the framework for 

production systems. Nowadays, HDFS is the file system underlying most big data projects. It is a distributed 

                                                           
2 http://hadoop.apache.org/ 
3 http://nutch.apache.org/ 
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file system developed in Java able to provide a reliable file system on commodity hardware. HDFS is scalable 

and fault-tolerant: in case more space is required, it is possible to add nodes to the HDFS clusters; when one 

or more nodes fail, the HDFS is able to still provide availability to the data stored on the isolated nodes by 

maintaining distributed replicas of data. 

The architecture of a typical HDFS cluster is represented in Figure 7.  There are two types of nodes: Data 

Nodes and Name Nodes. The first type is used to physically store data, while the latter is used to maintain a 

file table that is used to access the files. 

 

Figure 7: Architecture of an HDFS cluster 

 

The developers of HDFS have improved the file system over time with the addition of several features 

described in the following Table 4. 

Table 4: HDFS features.  

Feature          Description 
Rack awareness Considers a node’s physical location when allocating storage and 

scheduling tasks. 
Minimal Data Motion Hadoop moves compute processes to the data on HDFS and not the 

other way around. Processing tasks can occur on the physical node 
where the data resides, which significantly reduces network I/O and 
provides very high aggregate bandwidth. 

Health Utilities Dynamically diagnose the health of the file system and rebalance the 
data on different nodes. 

Rollback mechanism Allow operators to bring back the previous version of HDFS after an 
upgrade, in case of human or systemic errors. 

Minimal Intervention HDFS requires minimal operator intervention, allowing a single 
operator to maintain a cluster of 1000s of nodes. 

High Availability Provides redundancy of the Name Node to supports high availability 
(HA). 

 

The main problem with HDFS is that it does not perform well with small files, because it has been designed 

for storage of big sequential indexes and this limitation results from this initial assumption. 
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Hadoop MapReduce is the open source implementation of the MapReduce framework described in the 

Google paper. As the name suggests, it is composed by two phases: Map and Reduce.  

The Map phase takes as input a set of objects and generates a set of Key-Values pairs. The criteria by which 

these Key-Values pairs are created depend on the implementation and on the problem to solve. As an 

example, we consider the typical word count problem. In the Map phase, each node takes as input a set of 

documents. Each document is tokenized into single words (Key) and for each word the Map phase counts the 

instances in the documents processed by the node (Value). 

After the Map phase, there is an intermediate phase, which is called Shuffling, where the outputs of several 

Maps could be aggregated with same Keys and forwarded to a Reduce phase. 

The Reduce phase takes as input a list of Key-Value pairs and creates a new list of Key-Values pairs. In the 

case of the word count problem, the Reduce phase takes the values associated with each Key and returns 

the sum. 

The main problem with the Hadoop implementation of the MapReduce process is that the output of the Map 

phase is stored in the HDFS, possibly resulting in a bottleneck, because frequent and intensive disk operations 

can become very expensive in terms of latency, computational resources, and network bandwidth. These 

issues become more apparent in cases where it is necessary to update models with new data, which is the 

typical case in machine learning applications. 

This limitation makes the Hadoop framework less performant with respect to more recent systems such as 

Spark, Flink and H2O. 

2.3.2 Mahout 
On top of Hadoop MapReduce, a number of tools have been developed aiming at efficiently distribute 

machine learning tasks. 

Among these tools, Apache Mahout4 has been one of the most commonly used for managing machine 

learning techniques with Hadoop. However, a problem with Mahout over Hadoop is that, since April 2015, 

the Mahout development team is gradually removing support to algorithms running on native MapReduce 

environments, due to the inherent inefficiencies of frameworks like Hadoop. An alternative approach is to 

adopt a new environment for Mahout called Samsara, which includes statistical and algebraic operations. 

This change on the focus of Mahout has been motivated by the intention to provide a platform for developing 

distributed processing algorithms, rather than providing a set of ready-made ones. 

Apache Mahout is both a machine learning library that can be integrated with different processing 

frameworks (e.g., Spark, H2O and Flink) and can run either on a single machine or in a distributed 

environment. 

Previously to its change of focus, Mahout provided a set of machine learning algorithms translated (where 

possible) into distributed processes and depending from the execution environment. The set of algorithms 

that were supported when Mahout was still fully supporting Hadoop were able to address classification, 

collaborative filtering, clustering, dimensionality reduction, topic modelling, Tf-Idf (Term frequency - Inverse 

document frequency), and others. 

                                                           
4 https://mahout.apache.org/ 
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Currently, the only types of algorithms supported are collaborative filtering, naive Bayes classification and 

dimensionality reduction. On the other hand, Mahout offers a very flexible solution to specific machine 

learning problems, allowing the composition of distributed algorithms from a set of basic operations. Some 

criticisms to Mahout were raised due to the difficulty with configuration, integration and development of 

new algorithms, however, older releases of Mahout were applied successfully in several production 

environments. At the moment of writing, due to the limited native support for machine learning algorithms, 

the suitability of Mahout for the EVOTION BDA is questionable, although it is still worth to be kept into 

consideration due to its flexibility in the creation of customized algorithms. 

2.3.3 Spark 
Spark5 was developed at the University of California, Berkeley moving later on to become an Apache project. 

The framework is based on MapReduce. The main motivation behind the creation of Spark was to address 

the inefficiencies of Hadoop in situations of intensive disk usage. Spark supports iterative computation and 

improve speed and resource utilization by adopting an in-memory computation model. These features are 

particularly well-suited for machine learning tasks. 

One of the main data abstraction used in Spark is called Resilient Distributed Dataset (RDD), which consists 

of a read-only distributed in-memory storage providing natively a fault tolerance mechanism without the 

need for physical replication of data on disk.  

RDD can be the result of an input process, as for example importing data from HDFS file system, or the result 

of a transformation process from others RDDs to new RDDs. Spark allows another type of operation on RDD 

that is called action: this type of operation is used to produce final results from a RDD. 

The architecture of Spark is composed by a Driver node and a set of Worker nodes as shown in Figure 8: a 

Driver node is where the program logic is executed, while Worker nodes store and perform operations on 

the RDD. Whenever is possible, there will be no data exchange between Workers nodes. For this reason 

transformations are divided into two groups: narrow and wide transformations, the first guarantees that no 

data between Worker nodes is exchanged (e,g., filter, map, sample), while in the second type of 

transformations data needs to be exchanged between Worker nodes (e.g., sort, group by, join,…). 

 

Figure 8- Example of Spark architecture 
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With Spark, intermediate results of the MapReduce computations, which were the reason for the 

performance problems with Hadoop, are stored in the distributed memory, significantly cutting down on the 

number of read and write operations on the file system and data exchange between nodes, as represented 

in Figure 9. 

Figure 9- RDD processing pipeline 

Spark also supports different programming languages (Java, Python, Scala and R), making it easy to develop 

and adapt to different environments.  

However, even Spark has some limitations. Data transfers take place throughout the network and, because 

of the job isolation mechanism, only one Driver can serve requests to all of its RDDs, potentially leading to a 

bottleneck when there are multiple requests to multiple nodes. 

Spark has also its own machine learning library called MLlib6, which is similar to early versions of Mahout. It 

provides the same set of machine learning algorithms, topic modelling and frequent patterns mining. MLlib 

takes advantage of Spark features for iterative batch processing, stream (micro-batch) processing and in-

memory caching of intermediate results and it is able to deliver better performances than Mahout. Other 

advantages of MLlib with respect to Mahout consist of its easy configuration and deployment, due to the fact 

that is tied to the RDD model and therefore does not require adaptation and integration efforts. 

Some critics highlighted the fact that MLlib's behaviour in non-ideal situations (very large or very small 

vectors of data) have raised some issues. Other studies pointed out the fact that the tool has performance 

issues due to slow convergence of some algorithms.  

More recently Mlib switch to DataFrame while RDD-Based APIs have entered in maintenance mode. A 

Dataset, introduced with Spark 1.6, is a distributed collection of data. Dataset is a new interface that provides 

the benefits of both RDDs and Spark SQL’s optimized execution engine. A DataFrame is a Dataset organized 

into named columns that also provide a more user-friendly API than RDDs. 

                                                           
6 http://spark.apache.org/mllib/ 
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Additionally, Spark provides a concept called ML pipeline7 built on top of Spark-SQL8 library and allowing 

users to set up, build and execute machine learning processing pipelines. MLlib provides standardized APIs 

for machine learning algorithms which makes easier to combine MLlib algorithms into a processing pipeline. 

ML pipelines also allow creating non-linear processing pipelines, as long as they are defined as Directed 

Acyclic Graphs (DAG). 

2.3.4 Flink  
A relatively new approach supporting stream and batch processing is Apache Flink9 originated from the 

Stratosphere research project of the University of Berlin. Flink combines database, stream processing and 

MapReduce technology to support user defined functions, complex data types, and the scalability of 

MapReduce systems. In addition, it offers the declarative, independence, and automatic optimization of 

database technology, allowing data analytics engineers to focus on the analytic problem instead of 

programming issues. Apache Flink also supports batch and stream processing, thus allowing the 

implementation of Lambda and Kappa processing architectures.  

Similar to Spark, Flink is composed by a Job Manager and several Task Manager nodes. The Job Manager 

executes the program logic, while the Task Managers execute atomic operations on data. It supports generic 

Map and Reduce functions (allowing the execution of Flink code using traditional MapReduce approach 

without modification), but also some more specialized functions (e.g., join, group, iterate) and an 

optimization tool that automatically selects the best execution strategy for each process. A proprietary 

machine learning library is also available, called Flink-ML. 

With respect to Mahout and MLlib, the list of supported algorithms is smaller: Support Vector Machines 

(SVM) and multiple linear regression are the only available supervised algorithm, while K-nearest neighbours 

is the only implemented unsupervised algorithm. An Alternating Least Squares (ALS) recommendation 

algorithm is also available as well as some data pre-processing methods and support utilities such as cross 

validation. Additional machine learning algorithms are expected to be available in future releases. 

Still similar to Spark, the library provides the feature of building processing pipelines, in a similar fashion than 

the well-known scikit-learn10 library developed for Python programming language. 

Additionally, an adapter is available for the Apache SAMOA library (discussed in the following), which offers 

learning algorithms for stream processing. 

The Flink team also published benchmark results on some machine learning tasks, such as Page Rank, 

reporting that Flink’s execution was significantly faster than Spark. 

2.3.5 H2O  
H2O11 is an open source project (with additional support for Enterprise editions) that, more than a distributed 

processing framework, can be considered as a complete analytical product on its own: it provides a 

distributed processing engine, data pre-processing, analytics, mathematics libraries, machine learning 

libraries and evaluation tools. As well as Spark, it offers support for Java, R, Python, and Scala languages and 

                                                           
7 http://spark.apache.org/docs/latest/ml-pipeline.html 
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9 http://flink.apache.org/ 
10 http://scikit-learn.org/stable/ 
11 http://www.h2o.ai/h2o/ 
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it is able to execute Spark processes by integrating with Spark processing framework through its Sparking 

Water12 library. H2O is also able to execute its own processing models on top of Spark and Storm. Users with 

no programming skills could define processing pipelines via the Web interface. 

Similar to Flink, H2O processes data in-memory using multiple execution methods. 

The generic approach to deploy a job in H2O is called Distributed Fork/Join which is a divide and conquer 

technique adapting well to massively parallel tasks. This approach breaks down a processing job into smaller 

jobs, which are executed in parallel, resulting in dynamic fine-grained load balancing for MapReduce jobs as 

well as graphs and streams.  

Regarding machine learning aspects, Mahout's library offers implementation of most of its machine learning 

algorithms for H2O. However, H2O platform is shipped with a ready-made machine learning module that in 

addition to traditional machine learning algorithms offers a set of tools for deep neural networks, which is 

nowadays a hot topic due to the important advances in several machine learning problems and the enormous 

hype that the media generated as a result of it. 

At of the time of writing, the machine learning tools offered with H2O are able to address a relatively wide 

set of tasks, including: classification, clustering, generalized linear models, statistical analysis, ensembles, 

optimization tools, data pre-processing options and deep neural networks. On the roadmap for future 

implementations there are additional algorithms and tools as well as recommendation and time-series 

analysis and prediction. 

2.3.6 Streaming technology 
Nevertheless, Hadoop is designed for batch processing, it shows multi-purpose features, but not the ones 

required for a real-time and high performance engine, due to the excessive throughout latency in its 

implementations.  

Some of the batch frameworks previously described show a certain ability to deal with streams (e.g. Flink) 

but not in a real-time manner. Some native real-time Big Data platforms, such as Storm and Splunk, are 

specifically designed for real-time stream data analytics. It means that the ongoing data processing requires 

a very low latency of response, achieved by reducing the storing actions in the streaming pipeline (Zhang et 

al., 2016). 

The streaming capabilities required for EVOTION are currently limited, therefore we have just revised the 

most commonly used solutions for streaming. Architecturally speaking, the EVOTION BDA is ready to extend 

its streaming capabilities easily if needed in the process of integration with the rest of the platform. 

Storm  

Storm13 is specifically designed for distributed fault-tolerant real-time processing, initially conceived to 
overcome deficiencies of other processors in collecting and analyzing social media streams and currently 
released as open source.  
To implement real-time computation on Storm, users need to create different topologies. A topology is a 
graph of computation representing the transformations of the stream, each node in the topology executes 
in parallel and the topology can be created and submitted using programming language. The Storm 
architecture consists of spouts and bolts. A spout represents one of the starting point of the graph denoting 
source of streams, while bolt processes input streams and outputs new streams. Each node in a topology 
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contains processing logic and links between nodes indicate how data should be processed between nodes. A 
Storm cluster consists of two kinds of working nodes, one Master node and several Worker nodes. The 
Master node (Nimbus) and Worker nodes (supervisor) implement two kinds of daemons responsible for 
distributing code across the Storm cluster, scheduling works assigning tasks to Worker nodes, and monitoring 
the whole system. The supervisor complies with tasks assigned by Nimbus, and starts or stops worker 
processes when necessary. The entire computational topology is partitioned and distributed to a number of 
worker processes implementing a part of the topology.  
Storm was built as a stand-alone system independent from Hadoop. Recently some efforts have been 
devoted to integrate the two projects in the framework of the so-called Nathan Marz’s “Lambda 
architecture”. 
Storm does not ship with a machine learning library but, for instance, SAMOA platform14, for mining 
big data streams, has implementations for classification and clustering algorithms running on Storm, H2O has 
also offered a way to link the two projects, and Trident-ML offers a library of learning algorithms built on 
Storm, to name but a few. 
 
Apache Samza 

Apache Samza15 is a distributed stream processing framework. It uses Apache Kafka for messaging, 

and Apache Hadoop YARN to provide fault tolerance (i.e. task migration), processor isolation, security, and 

resource management. Samza manages taking snapshots and restoration of a stream processor’s state via 

consistent snapshot, and provides processor and resource isolation through Linux CGroups. It is part of the 

Hadoop ecosystem but also works with other messaging and executing environment thanks to the API. 

Spark Streaming 

Spark Streaming is an extension of Spark enabling scalable, high-throughput, fault-tolerant stream 

processing. Data ingestion can be originated from many sources like Kafka, Flume, TCP sockets, and can be 

processed using complex algorithms like map/reduce, as well as Spark’s machine learning and graph 

processing algorithms. Processed data can be stored to filesystems, databases, and made useful in live 

dashboards. Spark Streaming provides a high-level abstraction called DStream (discretized stream) which 

represents a continuous stream of data as a sequence of RDDs. It divides the data into batches, which are 

then processed by the Spark engine to generate the final stream of results in batches. 

 

2.4 EVOTION BDA infrastructure layer 
In this section, we illustrate the EVOTION architecture describing the main adopted tools. Figure 10 shows 

the main components of our Big Data infrastructure.  We subdivided the platform components into four 

layers, as follows. 
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Figure 10 - EVOTION infrastructure overview 

 

Data storing and management. The EVOTION BDA Engine adopts the Hadoop, a tool for data-intensive 

distributed applications, based on YARN programming model and a distributed file system called Hadoop 

Distributed Filesystem (HDFS). Hadoop allows writing applications that rapidly process large amounts of data 

on large clusters of compute nodes, which suits the EVOTION needs. A YARN tool permits to divide the input 

dataset into independent subsets that are processed in parallel. The data storage part of the BDA Engine is 

the EVOTION Repository that is designed based on the peculiarities of the EVOTION datasets. It adopts HBase, 

Hive and Phoenix (Kalakanti et al., 2015). Hbase as database engine optimized for real-time data access to 

large tables, Hive as the data warehousing infrastructure and Phoenix as data management suitable for 

massively parallel, relational database engine.  

Data analysis and tasks. The EVOTION BDA provides a Task Catalogue based on a set of computation libraries 

to provide analytic and processing capabilities. Among the huge set of available libraries we selected: i) Spark, 

as general purpose cluster computing engine specialized at making data analysis faster supporting in-memory 

computing, ii) H20 allowing users to fit thousands of potential models as part of discovering patterns in data, 

iii) Mahout as distributed linear algebra framework and mathematically expressive Scala DSL designed to let 

mathematicians, statisticians, and data scientists quickly implement their own algorithms,  iv) Flink which is 

a dataflow programming model  that provides event-at-a-time processing on both finite and infinite datasets. 

Data flow management and workflow orchestration. The EVOTION BDA also offers Workflows Catalogue 

where executable workflows of analytics Tasks are stored. As orchestrator manager, we selected Oozie that 

permits to organize, manage and schedule workflows based on events and actions (Chuan-kai, 2014). 

Furthermore, EVOTION adopts Sqoop tool for efficiently transferring bulk data between Hadoop and 

structured datastores and vice versa. This can be useful in case of massive intermediate data to be moved 

to/from the Repository. EVOTION BDA Engine handles primarily batch and ready-to-orchestrate tasks, thus 

a flexible binding capability makes Kafka a convenient solution for EVOTION as well. Kafka will be primarily 

used to handle event driven processing of analytics. 

Data visualization. The EVOTION BDA offers to the Dashboard a visualization tool to visualize results of 

analytics or directly ask for a simple aggregation or query. We adopt Zeppelin, a web-based and multi-

purpose notebook that enables interactive data analytics. The notebook is a powerful yet limited tool, 

therefore we decided to use Zeppelin for simple analyses only, while we directly work with Spark for other 

complex analytics workflows.  
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Platform Management. The tool adopted by EVOTION BDA for platform management is Ambari, belonging 

to the Apache ecosystem. It offers features for provisioning, managing, monitoring and securing Apache 

Hadoop clusters. Ambari takes the guesswork out of operating Hadoop. 

The architecture we adopted is capable to handle asynchronous update on the speed layer processing models 

and scheduled update on the batch layer handling scheduled analytics similarly to new models like bistro 

model (Savinov 2016, Savinov 2016-2 , Savinov 2017, Savinov 2017-2). In addition, we proposed a similar 

architecture focused on policy making in smart city scenario where the policies are simply defined with a 

deontic logic form (Anisetti at al., 2018). Fang et al. presents a survey on Big data application in health 

informatics. The survey undeline the BDA capabilities and how the current solutions are used for health and 

medical application (Fang et al., 2016). Rathore et al. proposes a Big data engine based on Hadoop but 

focused more on specific assisted healthcare (Rathore et al., 2017). EVOTION requires a much more flexible 

architecture than the one proposed in literature, allowing to programmatically customization and set up of 

analytics.  

As it is structured The EVOTION BDA infrastructure is a TORADOR compatible landing platform meaning that 

it has orchestrations and execution capabilities that are in general required by a TORADOR big data 

infrastructure aimed to address analysis like the ones required for the EVOTION.  

As an additional remark, the TOREADOR compatibility is provided by the development of the two catalogues, 

the Task and the Workflows catalogues that supports model-driven definition of analytics to be executed 

especially, but not only, the ones not driven by the PHPDM. In the following we will details these catalogues 

and their role in the creation and execution of analytics. 
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2.5 Task Catalogue 
The Task Catalogue handles the available Implemented Analytic Tasks that can be composed into an EDAW 

by the PHPDM Transformation tool. 

An Implemented Analytic Task is a DAW Task for which code had been developed to implement the relative 

Algorithm (e.g., cleaning, clustering) or simple Operation (e.g., data source selection), and it had been 

deployed into the EVOTION BDA in such a way that it can be executed while embedded into an EDAW.  

An Implemented Analytic Task, as entry of the Task Catalogue includes the following attributes:  

• unique ID; 

• implemented Analytic Task name; 

• the corresponding DAW Task ID in the EVOTION Ontology; 

• the name and the version of required software libraries; 

• the programming language used in the development; 

• the path of source code/executable; 

• details on dependencies (e.g., another task to be extended) if any; 

• textual description about the algorithm; 

In the following we provide an example of Task Catalogue Entry for Spark_OneWayANOVA, an 

implementation of ANOVA Task using Spark libraries. 

Attribute Value 

ID: 123 

Name: Spark_OneWayANOVA 

DAWTaskID: StatisticalAnalysisAlgorithm:ANOVA 

Lib: Spark v 2 

Language: Scala 

Path HDFS:// 

Dependencies: none 

Description: Scala Implementation of Simple OneWayANOVA using Spark 

 

A number of algorithms implementing specific tasks are available in different libraries for Big Data 

computations (some examples are listed in Table 1).16 

While libraries can be used directly to implement a task, they offer heterogeneous interfaces and express 

parameters and data formats in different ways. In order to have a uniform catalogue of Implemented Tasks, 

each Implemented Analytic Task implements an interface to wrap the adopted libraries (i.e., Task Wrapper 

interface) into a common standard interface. This Task Wrapper interface reduces dependencies on the 

libraries implementing specific algorithms and makes the orchestration of Tasks into EDAWs more 

straightforward. 

More specifically, the PHPDM Model Instance defines, for each DAW’s Task, some parameters in terms of 

expected input and output. The Task Wrapper maps them to the library ones to resolve library dependencies 

at task level. 

                                                           
16 Our Implemented Analytic Task either will exploits these libraries when available or implements a specific algorithm 
from scratch. 
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Our Task Wrapper offers: i) Init method to maps expected parameters/input with the library ones, set up 

environmental settings, transform data types etc., ii) Run method to execute the core algorithm relative to 

the Implemented Data Analytic Task, iii) postProcessing method to reshape the output of the algorithm as 

expected by the PHPDM model instance (OutputDataSpecifications). 

For instance, let us consider simple K-Means which is defined as an Unsupervised Data Mining Analytic Task 

in D4.1 (Prasinos at al., 2017). It can be implemented using the Mahout Hadoop library, and deployed in the 

BDA with all dependencies satisfied ready to be executed. The task implementation requires to wrap the 

Mahout-kmeans into our Task Wrapper to provide standardized interface. The Init method must be 

implemented to make the merge between the parameters expressed at PHPDM model instance level (e.g., 

seed, numKMeansRuns, maxIterations, to name but a few) and the ones relative to the specific Mahout-

kmeans implementation. For instance, in case that the type of distance is not specified in the PHPDM Model 

Instance, the Init method must select one distance definition among the ones available in Mahout (e.g., 

ManhattanDistanceMeasure. class.getName()). The Run method executes the K-means calling the Mahout 

implementation (i.e., KMeansDriver.runJob()) and the postProcessing method maps the output (i.e., a csv file 

stored in the filesystem) to a table in the Repository as for instance requested by the PHPDM Model Instance. 

In the following, we present the Task Wrapper Interface in Scala. 

trait Task { 

val params: Map[String,Any] 
def init def run 
def postprocessing 
} 
 

In Table 5, we presented some of the Data Mining algorithms that can be implemented and added to the 

Task Catalogue according to the relative library.  According to D4.1, a number of them can be implemented 

to cover the scenarios of D2.1. We note that for some of them we have potential multiple implementations 

depending on the selected libraries.  

The Task Catalogue will be incrementally populated with Task Implementations during the development of 

the PHPDM Transformation Tool in WP4. 

Table 5: Some of the available Data Mining algorithms that could be specified in DAW Tasks and listed in the 

Task Catalogue  

Task Name Framework Library Algorithm 

Hadoop-Mahout-LogisticRegression Hadoop Mahout Logistic Regression using 

Stochastic Gradient Descent (SGD) 

Hadoop-Mahout-NaiveBayes Hadoop Mahout Standard Multinomial Naive Bayes 

Classifier, model and prediction 

Hadoop-Mahout-Canopy Hadoop Mahout Canopy clustering 

Hadoop-Mahout-KMeansClustering Hadoop Mahout K-means clustering, model and 

prediction 

Hadoop-Mahout-FuzzyKMeans Hadoop Mahout K-means with fuzzy sets 

Hadoop-Mahout-Spectral Hadoop Mahout Spectral clustering 
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Spark-Mllib-SVMModel Spark MLlib Model for Support Vector 

Machines 

Spark-Mllib-SVMPredict Spark Mllib Prediction for a given SVM Model 

Spark-Mllib-LogisticRegresionModel Spark Mllib Model for logistic regression 

Spark-Mllib-LogisticRegresionPredict Spark Mllib Prediction for a given Logistic 

Regression Model 

Spark-Mllib-RegressionModel Spark Mllib Liner Regression Model (SGD) 

Spark-Mllib-RegressionPredict Spark MLlib Regression prediction given a 

Model 

Spark-Mllib-

DecisionTreeClassificationModel 

Spark MLlib Model for Decision Tree 

Spark-Mllib-

DecisionTreeClassificationPredict 

Spark MLlib Prediction for a given Model for 

Decision tree 

Spark-Mllib-

DecisionTreeRegressionModel 

Spark MLlib Model for Decision Tree Regression 

Spark-Mllib-

DecisionTreeRegressionPredict 

Spark MLlib Prediction for a given Model for 

Decision Tree Regression 

Spark-Mllib-

RandomForestClassificationModel 

Spark MLlib Model for Random Forest 

(ensembles of decision trees) 

Spark-Mllib-

RandomForestClassificationPredict 

Spark Mllib Prediction for a given Model for 

Random Forest 

Spark-Mllib-

RandomForestRegressionModel 

Spark Mllib Model for Random Forest 

Regression 

Spark-Mllib-

RandomForestRegressionPredict 

Spark MLlib Prediction for a given Model for 

Decision Tree Regression 

Spark-Mllib-

GradientBoostedTreeClassificationModel 

Spark MLlib Model for Gradient-boosted tree 

Classification 

Spark-Mllib-

GradientBoostedTreeClassificationPredict 

Spark MLlib Prediction for a given Model for 

Gradient-boosted tree 

Classification 

Spark-Mllib-

GradientBoostedTreeRegressionModel 

Spark MLlib Model for Gradient-boosted tree 

Regression 

Spark-Mllib-

GradientBoostedTreeRegressionPredict 

Spark MLlib Prediction for a given Model for 

Gradient-boosted tree Regression 

Spark-Mllib-NaiveBayesModel Spark MLlib Model for Naïve Bayes Classifier 
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Spark-Mllib-NaiveBayesPredict Spark Mllib Prediction for a given Model for 

Naïve Bayes Classifier 

Spark-Mllib-KMeansModel Spark Mllib Model for K-means 

Spark-Mllib-KMeansPredict Spark MLlib Prediction for a given Model for K-

means 

Spark-Mllib-PicModel Spark MLlib Model for Power Iteration 

Clustering 

Spark-Mllib-PiicPredict Spark MLlib Prediction for a given Model for 

Power Iteration Clustering 

Spark-Mllib-LdaModel Spark MLlib Model for Latent Dirichlet 

allocation (topics from text) 

Spark-Mllib-LdaPredict Spark MLlib Prediction for a given Model for 

Latent Dirichlet Allocation 

Spark-Mllib-BisectingKmeansModel Spark MLlib Model for Bisecting k-means 

(hierarchical clustering) 

Spark-Mllib-BisectingKmeansPredict Spark Mllib Prediction for a given Model for 

Bisecting k-means 

Spark-Mllib-Pca Spark Mllib Model form Principal component 

analysis (dimensionality reduction) 

Spark-Mllib-AssociationRules Spark Mllib Association Rules Learning (relation 

discovering between variables) 

Flink-FlinkML-LinearRegression Flink FlinkML Linear Regression  

Flink-FlinkML-MultipleLinearRegression Flink FlinkML Multiple Linear Regression Model 

and prediction 

Flink-FlinkML-KMeans Flink FlinkML K-means clustering 

Flink-FlinkML-Knn Flink FlinkML k-Nearest Neighbors Classification 

Flink-FlinkML-Svm Flink FlinkML Support Vector Machine 

H20-GlmModel H2O H2O-ML Generalized Linear Models Model 

H20-GlmPredict H2O H2O-ML Prediction for a given Generalized 

Linear Models Model 

H2O-GbmModel H2O H2O-ML Gradient Boosting Machine Model 

H2O-GbmPredict H2O H2O-ML Prediction for a given Gradient 

Boosting Machine Model 
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H2O-DeepLearningModel H2O H2O-ML Deep Learning based on a multi-

layer feedforward artificial neural 

network Model 

H2O-DeepLearningPredict H2O H2O-ML Prediction for a given Deep 

Learning Model 

H2O-RandomForestModel H2O H2O-ML Distributed Random Forest Model 

H2O-RandomForestPredict H2O H2O-ML Prediction for a given Distributed 

Random Forest Model 

H2O-NaivebayesModel H2O H2O-ML Model for Naïve Bayes Classifier 

H2O-NaivebayesPredict H2O H2O-ML Prediction for a given Naïve Bayes 

Classifier Model 

H2O-StackEdensemblesModel H2O H2O-ML Stacked Ensembles Machine 

Learning Model (multiple learning 

algorithms) 

H2O-StackEdensemblesPredict H2O H2O-ML Prediction for a given Stacked 

Ensembles Classifier Model 

H2O-XgboostModel H2O H2O-ML XGBoost boosted supervised 

learning Model 

H2O-XgboostPredict H2O H2O-ML Prediction for a given XGBoost 

Model 

H2O-Kmeans H2O H2O-ML K-Means 

H2O-Pca H2O H2O-ML Principal Component Analisys 

Stream-Spark-Mllib-SVMPredict Spark 

stream 

MLlib Batch model and Stream for SVM 

prediction 

Stream-Spark-Mllib-LogisticRegression-

Predict 

Spark 

stream 

MLlib Streaming Logistic Regression  

Stream-Spark-Mllib-Regression-Predict Spark 

stream 

MLlib Streaming Regression 

Stream-Spark-Mllib-

StreamingLinearRegression 

Spark 

stream 

MLlib Streaming Linear Regression 

Stream-Spark-Mllib-

DecisionTreeClassificationPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Decision Tree Classification 

prediction 
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Stream-Spark-Mllib-

DecisionTreeRegressionPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Decision Tree Regression 

prediction 

Stream-Spark-Mllib-

RandomForestClassificationPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Random Forest prediction 

Stream-Spark-Mllib-

RandomForestRegressionPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Random Forest Regression 

prediction 

Stream-Spark-Mllib-

GradientBoostedTreeClassificationPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Gradient Boosted Tree 

Classification prediction 

Stream-Spark-Mllib-

GradientBoostedTreeRegressionPredict 

Spark 

stream 

MLlib Batch model and Stream for 

Gradient Boosted Tree Regression 

prediction 

Stream-Spark-NaiveBayesPredict Spark 

stream 

MLlib Batch model and Stream for Naïve 

Bayes prediction 

Stream-Spark-MLlib-Kmeans-Model Spark 
stream 

MLlib Streaming Model for K means 

Stream-Spark-MLlib-Kmeans-Predict Spark 

stream 

MLlib Streaming for K-means prediction 

Stream-Spark-MLlib-Pic-Predict Spark 

stream 

MLlib Batch model and Stream for Power 

Iteration Clustering prediction 

Stream-Spark-Mllib-Lda-Predict Spark 

stream 

MLlib Batch model and Stream for Latent 

Dirichlet allocation prediction 

Stream-Spark-Mllib-BisectingKMeans-

Predict 

Spark 

stream 

MLlib Batch model and Stream for 

Bisecting k-means prediction 

 

We note that the above implementations are in general splitted into training/modelling Tasks and 

testing/predicting Tasks. We also note that in most cases, streaming processing adopts a model constructed 

via batch analysis. 

In addition to data mining related tasks, the Task Catalogue includes Statistical Tasks like linear regression, 

ANOVA and F-Test to name but a few. In the following, Table 6 shows some of the Statistical algorithms that 

could be implemented as Task in the Catalogue. 
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Table 6: Some of the available statistical algorithms that could be specified in DAW Tasks and listed in the 

Task Catalogue. 

Task Name Framework Library Algorithm 

Spark_LinearRegressionStats Spark Mlib Linear Regression for Analysis of 

continuous dependent variable 

Spark_OneWayANOVA Spark Mlib OneWayANOVA  

Spark_TwoWayANOVA Spark Mlib TwoWayANOVA 

Spark_MultiWayANOVA Spark Mlib MutiWayANOVA 

Spark_BPTest Spark Mlib Breusch-Pagan Test 

Spark_Ftest Spark Mlib F-Test 

Spark_Fisher Spark Mlib Fisher’s Exact Test 

 

The catalogue also contains Processing Tasks involving pre-processing algorithm (e.g., feature selection and 

filtering) and operations (e.g., data cleaning, data merge, vertical and horizontal selection). Some of them 

are parametric but generic like merging, cleaning, selection. Other are more similar to Data Analytics Tasks 

but devoted to prepare the dataset for further analytics, like clustering to aggregate data set attributes and 

features selection. Concluding, tasks related to visualization are also part of the catalogue, like Zeppelin base 

task for visualization. They are optional and considered as part of the Processing Task in EVOTION. 

2.5.1  Task Catalogue’s APIs 
The Task Catalogue offers the following functionalities for internal use only: 

• AddTask: add an implementation of a given DAW Task. More implementations of the same DAW 

Task could coexist, for instance provided by different libraries. We allow the PHPDM Transformation 

tool to specify a particular available implementation of a Task. 

• ModifyTask: modify any of the Task related aspects, like pointing to different implementation, 

modifying specific Task attributes like the reference library to name but a few. 

• RemoveTask: remove a Task from the Catalogue with all its implementation, or to remove a specific 

implementation of a given Task. It is useful in case of update of libraries versions that makes some 

implementation no more executable, or deprecated. 

It also offers a functionality for the interaction with the PHPDM Transformation tool: 

• FindTask: search for an implementation given a DAW Task ID. It returns details needed to embed the 

Implemented Task into the EDAW (i.e., the entire Task Catalogue entry). 

We note that when a Task is added to the Task Catalogue, the Ontology Manager is notified for updating the 

related Ontology Class with the corresponding Task and adding the new available implementation as 

subclass. Similarly, in case of removal of a given Implemented Analytic Task, the Ontology Manager is 
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notified. This will be of help to let EVOTION Stakeholder disambiguate between different implementations 

of the same DAW Task. 

2.6 Workflow Catalogue 
The Workflow Catalogue is responsible to handle EDAWs. To this aim, it is composed of three sub-

components (see Figure 11): i) the Catalogue stores/removes EDAWs, ii) the Workflow Scheduler schedules 

the execution of EDAW according to the specification given (i.e., periodic, upon request, or driven by data 

size change), iii) the Workflow Manager responsible to keep track of the running EDAWs. 

 

Figure 11: Internal structure of Workflow Catalogue 

The EVOTION BDA Infrastructure is able to support orchestrated workflows, requiring the intervention of a 

dynamic orchestrator like Oozie, and statically generated workflows directly executable by the BDA Engine 

(EVOTION Native Workflows).  

How the workflows are defined and structured will be detailed in the PHPDM Transformation Tool, of work 

package WP4, and the corresponding deliverable D4.3 to be released at M30. In this report, for sake of 

simplicity, we consider just statically generated workflows as running examples. 

An EDAW, as an entry of the Workflow Catalogue, includes the following attributes: 

• Unique ID; 

• EDAW name; 

• the corresponding DAW ID specified by the PHPDM Specification tool; 

• the list of Implemented Analytic Tasks included in the EDAW; 

• list of (formal) parameters for each Task of the EDAW, and the list of parameters for the workflow as 

a whole; 

• the language used for the development (e.g., Scala, Java)/ the Orchestrator adopted for the 

orchestration (e.g., Oozie, Scala);; 

• the path to the source/executable code or the path of the Orchestration meta description; 

• the Workflow Execution Type (on request, schedules, data change driven) and the relative scheduling 

preference (e.g., every day, on request, when size increases about 20%); 

• the Job ID, and identification of the running Job related to this EDAW as it is defined by the Workflow 

Manager 

• a textual description of the Workflow purpose and characteristics. 

In the following, we provide an example of a Workflow Catalogue Entry related to an EDAW 

(HA_Barriers_WF1) implementing a DAW (WF1) defined to cope with part of the D4.1 scenario “Addressing 

Barriers to HA usage”. 

Attribute Value 
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ID: 123 

Name: HA_Barriers_WF1 

DAWID: WF1 

Tasks <FeatureSelection, Spark_ANOVA> 

Params: List of Structured datatype like JSON one per Tasks (two JSON, plus one for 
the workflow-specific parameters) 

Language: Oozie 

Path HDFS://… 

WorkflowExecutionType: Monthly 

JobID 1234 

Description: The implementation of WF1 relative to the evaluation if the Education level 
impacts the HA usage. 

 

In Appendix A, we provide an initial modelling of some of  the analytic workflows of interest for EVOTION.  

2.6.1 Workflow Manager 
Figure 11 shows the internal structure of the Workflow Manager which is responsible to handle the execution 

of the EDAW in the Catalogue when requested and coherently with the required scheduling preference 

(Scheduler module), and manage the running EDAW (Job Manager module).  

More in details, the Workflow Manager is responsible to add the EDAW to the list of EDAWs to be executed 

(jobs list) according to scheduling preferences. In case of event driven scheduling (e.g., specific increment of 

the data size), the component periodically checks the scheduling preference and triggers the requested 

EDAWs execution.  When the execution of an EDAW job is triggered, it is added to the list of running jobs 

until its completion. The running job list is handled by the Job Manager which can list all the running jobs of 

corresponding EDAWs and stop each of them releasing resources. 

Scheduling capabilities are useful for recurrent analysis but also as a way to connect multiple workflow 

executions. 

For instance, let's consider a scenario requiring Data Mining Analytics. In this case, two workflows should be 

triggered: i) the model learning workflow (whose execution is triggered by a given increment in the data size 

used for learning) aimed at generating a model based on the available data, ii) the evaluation workflow 

(whose execution is triggered by the availability of a new learning model) aimed at performing the evaluation 

using the most recent learning model. 

During an EDAW execution, when a Task completes, a notification is produced to update the EDAW status at 

Dashboard level and to update the relative DAW in the PHPDM Model Instance stored in the Ontology 

Manager with intermediate results, if needed. These notifications are handled at Task level within the Task 

Wrapper. 

When the execution of an EDAW is completed, the results are saved into the EVOTION Repository and a 

notification is released to notify EVOTION users, as well as the Ontology Manager in order to update, with 

the obtained results, the PHPDM Model Instance relative to the executed DAW. 

The notification format always includes the EDAW ID and the location where results are available. The specific 

data structure of the results is part of a DAW specification. 
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Specific mechanisms to release notifications will be defined during the integration work package (WP6). 

Advanced approaches are currently under discussion, including Enterprise Service Bus and Notification 

Service. 

The Workflow Manager therefore offers the following functionalities for internal use only: 

• AddEDAWJob: add an EDAW to the list of scheduled jobs according to the scheduling preference.  

• RemoveEDAWJob: remove an EDAW from the list of scheduled jobs. If in running state, it is firstly 

stopped (StopRunningEDAWJob) and then removed. 

• ListRunningEDAWJob: list all the running jobs and the relative EDAWs. It can be also used as a way 

to monitor resource consumption. 

• StopRunningEDAWJob: stop a specific job. For instance, some EDAWs may last for a long period of 

time depending on the complexity of the implemented Workflow; if an EVOTION Stakeholder decide 

to stop an analytic which is no more needed, she can interact with the BDA for stopping a running 

EDAW releasing resources for other computations. When a EDAW is stopped it still remains in the 

schedule list. 

2.6.2  Workflow Catalogue's APIs 
The Workflow Catalogue offers APIs to the rest of the EVOTION platform to handle and trigger execution of 

EDAWs. In the following, we present a revised version of the APIs initially provided in D2.2.  

• AddWorkflow: allow to add a given EDAW into the Workflow Catalogue.  When an EDAW is added, 

it provides as output the ID of the EDAW as it is saved in the Catalogue. Adding a EDAW is not 

automatically triggering its execution. 

• FindWorkflow: allows to find a workflow by its ID or a list of Workflows implementing a specific DAW. 

• ModifyWorkflow: allow to modify/update parameters for each Task of a loaded EDAW as well as 

EDAW attributes like scheduling preferences. For instance, it permits to modify the number of 

clusters k of an EDAW requiring k-means Task of to update the Workflow code. A modification of an 

EDAW that is in running state requires that it is stopped and removed from the scheduled job list. 

• RemoveWorkflow: allow to remove an EDAW from the Catalogue. When an EDAW is removed from 

the Catalogue, it is also removed from the job schedule list (RemoveEDAWJob). 

• ExecuteWorkflow: execute a given EDAW loaded in the catalogue. It can be also used to force re-

execution of an EDAW coherently with the schedule preference. The use of this functionality 

automatically triggers the creation of a job in the scheduled job list (AddEDAWJob). 

• StopWorkflow: stop the execution of an EDAW and perform the relative rollback activities if required 

(e.g., removing temporal stored data). The use of this functionality automatically triggers the stop of 

the relative job in the list of running jobs (StopRunningEDAWJob) 

As a general comment, we note that different EVOTION Stakeholders may have different instances of 

scheduled EDAWs corresponding to the same source EDAW. The dashboard is the component responsible to 

maintain the references between EVOTION Stakeholders and the relative processes including PHP policies 

and EDAWs. 
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2.7 Infrastructure/Catalogues Management Backend Dashboard 
We developed a BDA Backend Dashboard to allow direct interaction with the BDA Engine and to support 

execution of workflows before the final integration of the EVOTION architecture takes place. The usage of 

this dashboard is restricted to EVOTION administrators only and it will not be released to EVOTION 

Stakeholders. For instance, EVOTION data scientists that want to extend EVOTION Task Catalogue with 

additional analytic tasks will access the Task Catalogue through this dashboard and operate using the Web 

GUI. 

Summarizing, the BDA offers a Management web interface for: 

• Task Catalogue to search, list, add modify and remove Implemented Analytics Tasks. 

• Workflow Catalogue to list all available EDAWs and to manually add/modify a given EDAW. 

• Workflow Scheduler, to see scheduled EDAWs in a given timeframe. 

• Workflow Manager, to see running EDAWs and manually stop them. 

As an additional management Dashboard, we use the Ambari Dashboard to inspect the infrastructure status, 

updates tools or libraries, handles computation nodes, to name but a few. 

2.8 API Module 
To interact with the rest of the EVOTION components, the BDA Engine exposes RESTFUL APIs. These APIs 

permit to cover all the above functionalities/APIs exposed by the BDA Engine sub-components, following the 

EVOTION integration guideline. The API module exposes also internal component’s functionalities that 

require specific authorization to be used. These internal functionalities are exposed to be consumed mainly 

by the BDA Dashboard for management.  Authentication and Authorization JWT token is adopted for every 

interaction with the APIs to avoid unwanted/malicious interaction. Since it is used in all the APIs, we omitted 

it as parameters in the following API descriptions. The list of APIs with details are presented in the following, 

while the RESTFUL version is available in the implementation Section 3.  

id AddWorkflow(EDAW, params) 

AddWorkflow It permits to add an EDAW into the Workflow 
Catalogue.  

Input parameters 
Name Type Description 
EDAW Structured type.  It is the Workflow 

Catalogue entry including 
executable/orchestrated 
workflow as provided by 
the PHPDM Transformation 
tool, scheduling 
preferences, formal 
parameters, etc. 

Params List of Structured types 
representing each Tasks’ 
actual parameters. 

It contails all the 
requested parameters for 
each Task in the EDAW. The 
EDAW is structured to 
take parameters at Task 
level. 

Output parameters 
Name Type Description 
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Id Numeric It represents the id of 
the loaded EDAW as stored 
in the Workflow Catalogue 

 

<list of EDAWs> FindWorkflowModel(DAWID) 

FindWorkflowModel Finde all the EDAW referred to a given PHPDM Model 
Instance Data Analytic Workflow (DAWID) from the 
Catalogue. 

Pre-conditions DAWID must refers to an existing Model Instance in 
the Ontology Manager. 

Input parameters 
Name Type Description 
DAWID String Unique identifier for a 

DAW Model Instance 
Output parameters 
Name Type Description 
list of EDAWs List of Structured type The list of EDAWS that 

refer to a specific DAWID 
in the Catalogue 

 

EDAW FindWorkflowInstance(EDAWID) 

FindWorkflowInstance Find a given EDAW from the Catalogue. 
Pre-conditions EDAWID must refers to a loaded EDAW. 
Input parameters 
Name Type Description 
EDAWID numeric Unique identifier for a 

loaded EDAW 
Output parameters 
Name Type Description 
EDAW Structured type The EDAW as it is in the 

Catalogue 
 

ret ModifyWorkflow (EDAW,params) 

ModifyWorkflow It permits to modify a given EDAW, like for instance 
updating the formal parameters, the schedule 
preference , the EWAD code, of a loaded EDAW. It 
allows to modify also the actual parameters. 

Pre-conditions The EDAW must be already loaded into the Catalogue. 
If the EDAW is running, it is first stopped, 
modified and then re-executed. 

Post-conditions Ret corresponds to a valid output message 
Input parameters 
Name Type Description 
EDAW Structured type.  It is the Workflow 

Catalogue entry 
including 
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executable/orchestrated 
workflow as provided by 
the PHPDM Transformation 
tool, scheduling 
preferences, formal 
parameters, etc. 

Params List of Structured types 
representing each Tasks’ 
actual parameters 

It contails all the 
requested parameters for 
each Task in the EDAW. 
The EDAW is structured 
to take parameters at 
Task level. 

Output parameters 
Name Type Description 
Ret boolean Positive in case of 

success, negative in 
case of error (e.g., 
EDAW is not available in 
the Catalogue) 

 

ret RemoveWorkflowModel(DAWID) 

RemoveWorkflowModel Remove all the EDAW referred to a given PHPDM Model 
Instance Data Analytic Workflow (DAWID) from the 
Catalogue. 

Pre-conditions DAWID must refers to an existing Model Instance in 
the Ontology Manager. 

Post-conditions Ret correspond to a valid output message. 
Input parameters 
Name Type Description 
DAWID String Unique identifier for a 

DAW Model Instance 
Output parameters 
Name Type Description 
Ret boolean Negative if the given 

DAWID is not present in 
the Catalogue, positive 
otherwise. 
boolean 

 

ret RemoveWorkflowInstance(EDAWID) 

RemoveWorkflowInstance Remove a given EDAW from the Catalogue. 
Pre-conditions EDAWID must refers to a loaded EDAW. 
Post-conditions Ret correspond to a valid output message. 
Input parameters 
Name Type Description 
EDAWID numeric Unique identifier for a 

loaded EDAW 
Output parameters 
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Name Type Description 
Ret boolean Negative if the given 

EDAWID is not present in 
the Catalogue, positive 
otherwise. 
boolean 

 

ExecuteWorkflow(EDAWID) 

ExecuteWorkflow Execute a loaded EDAW given its EDAWID according to 
the scheduler preference. It can be also used to 
force re-execution of an EDAW coherently with the 
schedule preference. 

Pre-conditions EDAWID must refers to a loaded EDAW 
Post-conditions The Job id given by the Workflow Scheduler is saved 

into the Workflow Catalogue entry related to EDAWID 
to manage the running/scheduled EDAW.  

Input parameters 
Name Type Description 
EDAWID numeric Unique identifier for a 

loaded EDAW 
 

ret StopWorkflow(EDAWID) 

StopWorkflow Stop the execution of an EDAW and perform the 
relative rollback activities if required. 

Pre-conditions EDAWID must refers to an EDAW under execution 
Post-conditions Ref correspond to a valid output message 
Input parameters 
Name Type Description 
EDAWID numeric Unique identifier for 

loaded EDAW 
Output parameters 
Name Type Description 
Ret boolean Positive if the EDAWID 

can be stopped, negative 
otherwise. 

 

id AddTask (ImplDAWTask) 

AddTask It allows to add an implementation of a given DAW 
Task (ImplDAWTask) into the Task Catalogue. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 

Input parameters 
Name Type Description 

ImplDAWTask A structured Type  It represents an entry of 
the Task Catalogue 

Output parameters 
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Name Type Description 
Id numeric It represent the id of the 

Implemented Task as it is 
inserted into the Task 
Catalogue 

 

Ret ModifyTask (ImplDAWTask) 

ModifyTask It allows to modify any of the Task related 
attributes, like pointing to different 
implementation, modifying the reference library to 
name but a few. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
ImplDAWTask must refers to an Implemented Task 
available in the Task Catalogue. 

Input parameters 
Name Type Description 
ImplDAWTask Structured Type  It represents the entry 

of the Task Catalogue for 
which we want to modify 
some of its attributes 

Output parameters 
Name Type Description 
Ret boolean Positive in case of 

successful modification, 
negative in case of 
error (e.g., EDAW not 
available in the 
Catalogue) 

 

Ret RemoveTaskModel (DAWTaskID) 

RemoveTaskModel It allows to remove all the implementation of a given 
a DAW task model 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
DAWTaskID must refer to a DAW Task present in the 
EVOTION Ontology Manager 

Input parameters 
Name Type Description 
DAWTaskID String representing a DAW 

Task ID in the Ontology 
Manager.  

It is an unique 
identifier referring to a 
Class in the Ontology of 
the PHPDM language. 

Output parameters 
Name Type Description 
Ret boolean Negative if the given 

DAWTaskID is not present 
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in the Catalogue, 
positive otherwise 

 

RemoveTaskInstance (ImplDAWTaskID) 

RemoveTaskInstance It allows to a specific implementation of a given 
Task. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
ImplDAWTaskID must refer to an Implemented Task 
available in the Task Catalogue. 

Input parameters 
Name Type Description 
ImplDAWTaskID Numeric. It represents an 

Implemented DAW Task. It 
is optional. 

It represents the entry 
of the Task Catalogue. If 
present the deletion 
refers just to this ID 
otherwise to all the 
implemented Task related 
to the DAWTaskID  

Output parameters 
Name Type Description 
Ret boolean Negative if the given 

ImplDAWTaskID is not 
present in the Catalogue, 
positive otherwise 

 

<ImplementedTasks> FindTask(DAWTaskID) 

FindTask It permits to search for an implementation of a given 
DAW Task ID. It returns the details needed to 
generate an EDAW  involving the retrieved Implemented 
Task. 

Input parameters 
Name Type Description 
DAWTaskID A String representing a 

DAW Task ID in the 
Ontology Manager.  

It is an unique 
identifier referring to a 
Class in the Ontology of 
the PHPDM language. 

Output parameters 
Name Type Description 
ImplementedTasks List of Implemented Tasks 

as they are specified in 
the Task Catalogue (i.e., 
the list of corresponding 
Catalogue Entries) 

It contains the 
Implemented Analytic 
Tasks’ details  relative 
to a given DAW Task ID. 
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JobID AddEDAWJob (EDAWID) 

AddEDAWJob It adds an EDAW to the schedule according to the 
preference. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
EDAWID must refer to an EDAW available in the 
Workflow Catalogue.  

Input parameters 
Name Type Description 
EDAWID Numeric Type representing 

an EDAW 
It represents the entry 
of the Workflow Catalogue 
for which we want set up 
a schedule. 

Output parameters 
Name Type Description 
JobID Job identifier It represents the 

identifier related to the 
EDAW in execution as it 
is represented by the 
Execution 
Manager/Scheduler 

 

RemoveEDAWJob (EDAWID) 

RemoveEDAWJob It removes an EDAW from the scheduler. If the EDAW 
is in running, it stops the EDAW job before the 
removal. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
EDAWID must refer to an EDAW available in the 
Workflow Catalogue.  

Input parameters 
Name Type Description 
EDAWID Numeric Type representing 

an EDAW in the Workflow 
Catalogue 

It represents the entry 
of the Workflow Catalogue 
for which we want to 
modify a schedule. 

 

<EDAWID> ListRunningEDAWJob 

ListRunningEDAW It lists all the EDAW that are running. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 

Output parameters 
Name Type Description 
<EDAWID> List of EDAWID It contains the list of 

all the EDAWID that are 
running 
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StopRunningEDAWJob(EDAWID) 

ListRunningEDAW It stops specific EDAWID. 

Pre-conditions This API is for internal use only and it requires 
BDA Administration authorizations to be executed. 
EDAWID must refer to a running EDAW. 

Input parameters 
Name Type Description 
EDAWID Numeric Type representing 

an EDAW in the Workflow 
Catalogue 

It represents the entry 
of the Workflow Catalogue 
wich is under execution 
and for which we want to 
stop the execution. 
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3. Security and privacy 
 

ENISA Threat Landscape17  provides a complete overview of the security concerns of a BDA architecture. Two 

aspects need to be carefully evaluated in terms of security and privacy: the BDA architecture and the analytic 

processing environment. Concerning the architecture, by design, the EVOTION BDA is a single-tenant 

system18, therefore we don't have to deal with security problems introduced by multi-tenancy, and it fully 

adopts the mechanisms defied for the overall EVOTION platform network protection, authentication and 

authorization. 

Considering confidentiality applied to BDA data analytic processes, it is still an open challenge. This is because 

although there is significant ongoing research on techniques supporting searching and reporting on 

encrypted data, like functional encryption and homomorphic encryption, such techniques cannot support 

practical big data analytics. However, such considerations are mainly focused on Big Data offered as a service. 

EVOTION is a vertical application of Big Data where the BDA is a subsystem mostly interacting via controlled 

API. Data are modelled and anonymized before entering the BDA, reducing confidentiality requirements after 

data ingestion. In addition, the BDA Engine is not in charge of security and privacy requirements of the 

workflows and the analytics, which are demanded to other EVOTION subsystems (e.g., PHPDM Specification 

and Transformation tools). With regards to executable workflows and analytics, the role of the BDA Engine 

is limited to grant correctness, also in terms of non-functional property, of the implementation.  

Considering integrity, it needs to be ensured across all processes run by the BDA Engine. Integrity of 

executable Tasks and Workflows may be enhanced through security-tagging. Every executable task and 

workflow arriving from a specified data source could be tagged with a tamper proof security tag identifying 

its producer and the time of production. However, we note that this is a process involving the Infrastructure 

as a whole and not just the BDA itself. 

Given the above general considerations, in this section, we present the threat model to be considered for 

the EVOTION BDA Engine and the corresponding objectives to be met. 

 

3.1 Threat Model 
The Big Data Architecture component could be subject to a number of threats coming, in general, from the 

access, network or physical, to its features.  

T.MALICIOUS_APPS - Malicious or Flawed Application 

In general, malicious or flawed applications pose a threat because of unauthorized features, embedded or 

resulting after an exploitation. Strictly speaking, the EVOTION BDA does not include applications nor is a 

general-purpose execution environment where rogue applications could be installed. However, the BDA 

makes use of libraries of functions, providing the building blocks for big data analytics, and computes 

workflows, as sequence of operations representing the building blocks of public health policies defined by 

EVOTION users, policy makers, in particular. Malicious or flawed libraries could replace legitimate ones and 

provide undocumented features for accessing or exfiltrating data, or for exploiting software and hardware 

resources of the BDA platform. For instance, a ransomware-like attack towards the BDA platform could 

                                                           
17 https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends/enisa-threat-landscape 
18 The BDA is not shared for different purposes but EVOTION. 
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potentially be carried out through a malicious library. Malicious workflows or tasks, instead, could be 

workflows/tasks with unauthorized sequences of operations, possibly compromising the security of EVOTION 

data or performing operations violating the intellectual property of the project, the purpose of the clinical 

trial, or deemed unethical. 

The twos, libraries and workflows, represent software artefacts that should be protected from tampering, 

illegal modification, and unauthorized replacement. Therefore, for the specific case of the BDA, the generic 

T.MALICIOUS_APPS threat class should be interpreted as possibly malicious or flawed library or 

workflow/task.   

T.NETWORK_ATTACK - Network Attack 

The EVOTION BDA has no direct network connection outside the EVOTION architecture, so it is not directly 

exposed to network-based threats coming from third parties or users. It has a number of network 

connections with EVOTION components through APIs. From a network perspective, then, threats for the BDA 

may originate if an attacker is able to gain access to internal, component-to-component, communication or 

is able to impersonate a fake EVOTION component.  

T.PHYSICAL Physical Access 

Threats from an unauthorized physical access to the BDA platform may include the disruption of hardware 

assets, tampering with the execution environment (operating system and file system), the upload or 

modification of critical BDA software components. The T.PHYSICAL threat class could realize the conditions 

required by T.MALICIOUS_APPS threats. 

T.PERSISTENT - Persistent Presence 

The persistent presence of an attacker on the BDA platform would have the consequence that the whole 

EVOTION functionality is possibly compromised. If an attacker has full control of the BDA, then results of 

analytics and workflows cannot be no longer trusted. A possible motivation for such a scenario could be that 

of an attacker wishing to influence decisions by policy makers by manipulating the results of the clinical trial 

and the hints that the EVOTION platform would provide to policy makers for evaluating a public policy. 

Another scenario could be of an attacker wishing to exfiltrate all results of the activity of policy makers, 

compromising confidentiality. The motivation in this case could be to anticipate possible decisions of policy 

makers and gaining illegal advantages from this information. A third scenario, could be that of an attacker 

wishing to exfiltrate data from the repository and illegally trade them. This would be possible with the 

persistent control of the BDA not just to exfiltrate them in bulk, but mainly to leak data slowly, in order not 

to trigger possible security monitoring mechanisms or behavioural controls on the activity of the BDA upon 

the data (Anisetti at al. 2017).  

3.2 Security Objectives and Functionalities 
With respect to the threat classes just presented, the BDA development has met a number of corresponding 

objectives. 

O.DATA_PROTECTION_TRANSIT - Protected Communications  

Communication between the BDA and other EVOTION components carried over a private network are 

secured with TLS/SSL security protocols. The same security solution at network level is applied for 

communication between nodes of the distributed BDA architecture for analytics execution and data 
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processing. This addresses the threat of network attacks (i.e., [T. NETWORK_ATTACK]). To achieve this 

objective, we enabled SSL on each BDA services. 

Furthermore, communications between EVOTION components and the BDA - i.e., with the Data Repository, 

the Ontology Reasoner, the PHPDM Transformation tool, the Frontend, and the DSS - is supported by mutual 

authentication of components, so to prevent MITM attacks or impersonation. This aspect will be covered 

during the Integration of the entire EVOTION Platform, currently all the components are ready to support 

this feature. 

 

O.STORAGE - Protected Storage 

The BDA does not provide typical storage features, because data processing is executed on the Data 

Repository and all the required security features is defined in the relative deliverable D5.2. However, the BDA 

has a local storage for complementary functionality. For instance, it keeps a copy of executable workflows 

organized in a catalogue and a task catalogue listing executable functions. These two local catalogues are 

needed for authorizing the execution of model instances. This local storage must be protected with respect 

to confidentiality, integrity and availability threats. Standard cryptographic features are adopted for the 

security of the local storage. In particular, we configure our MariaDB used for the Catalogues following the 

Center for Internet Security Benchmark19enabling at rest encryption. In addition we treat integrity of 

Workflows and Tasks at application level (see O.INTEGRITY - Component Integrity). Availability is guaranteed 

by the distributed file system for the Workflows and Tasks. We also note that the same protection is required 

for the learning models generated the BDA Engine. 

 

O.AUTH - Authorization and Authentication 

EVOTION Users do not have direct access to the BDA. The APIs exposed by the BDA in the EVOTION service 

architecture can only be accessed by authenticated and authorized components (Frontend, DSS, PHPDM 

Transformation tool). The same applies for components that the BDA accesses (Data Repository, Ontology 

Reasoner). Furthermore, entries of the Workflow and the Task Catalogues maintained locally by the BDA 

require authentication and authorization to prevent threats of the T.MALICIOUS_APPS class. 

 

O.ACCOUNTABILITY - System Reporting 

The BDA has features to generate logs of activity and executions, which may produce reports of activity. 

Anomalous behaviors can be identified enabling timely corrective actions or reconfiguration. Threats of the 

T.PERSISTENT class may be addressed through audits and anomaly detection actions. Activity logs produced 

by the BDA are protected against confidentiality, integrity, and availability attacks. Log collection at API level 

will be enabled during the integration thanks to specific log collection service. Internal BDA related logs are 

available as well but at component level to be used for auditing. 

 

 

                                                           
19 https://www.cisecurity.org/cis-benchmarks/ 
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O.APPLY_POLICY - Component Configuration 

Similar to all EVOTION components, also the BDA is configured to accept security policies defined at project 

level in order to ensure protection of enterprise or personal data, stored and processed. Security policies 

cannot be unenrolled and updates could be accepted only if signed by the EVOTION central management 

facility. 

 

O.INTEGRITY - Component Integrity 

Integrity requirements for the BDA concentrate mainly on the Workflow and Task catalogues, which should 

be protected from possible tampering, manipulation, or unauthorized updates. Cryptographic mechanisms 

and hashing techniques are deployed for assuring that only legitimate workflows, as maintained by the 

Ontology Reasoner, are available, and only legitimate tasks (e.g., functions, libraries) can be executed during 

an analytic execution. Workflows and Tasks integrity is guaranteed at application level using hashing. In 

addition, we consider of primary importance to keep monitored the vulnerabilities of the libraries used to 

implement Tasks 

 

O.PRIVACY - Component Privacy 

Privacy requirements for the BDA do not involve data from the clinical trial, because data processing is carried 

out completely on the Data Repository. Privacy requirements are instead related to the operations of the 

BDA and the policy model for which it could be used. Log and audit trails must be kept confidential, as well 

as the Workflow and the Task Catalogues. Log and audit trails, if disclosed, may provide information about 

the policy models defined by policy makers and the simulations run through the BDA, which are sensible 

information with respect to the activity of public agencies and the possible social or economic relevance 

represented by having access to preliminary work carried out by public policy makers. The Workflow and the 

Task Catalogue, instead, may reveal intellectual properties of the EVOTION project. Learning models in 

addition may provide the room for privacy leakages being able to exercise them appropriately. 

Task and Catalogue, as well as learning models are kept in a confidential location within the HDFS file system 

as well as logs that resides on an encrypted file system. Authentication and authorization is provided at API 

level. 

 

As a general consideration, a number of security services can be configured within the Apache ecosystem, 

like for instance Kerberos for authentication and authorization, Ranger, Knox, to name but a few. However, 

as emerged by the previous threat-objective analysis, they are not strictly required for the EVOTION BDA 

Engine, which is an internal API wrapped component. We will investigate the utility to have them included in 

the BDA during the integration process, as a more holistic view on security and privacy.  
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3.3 BDA Engine Privacy requirements 
Table 7 lists BDA specific relevant requirements as they are presented in D9.3. plus details on how our BDA 

addresses them. 

Table 7: List of new functional requirements specifically defined for the BDA. 

Generic GDPR 
requirement 

Action BDA 

G-REQ11  10: Security  EVOTION platform 
MUST treat structured 
data confidentially  

The Catalogues are kept confidential as well as 
Workflows and Tasks using encryption at rest 

G-REQ12  3: Aggregation 
of data  
4: Local de-
identification 
and 
anonymization  

EVOTION platform 
MUST keep the privacy 
and security of 
structured data  

The data are pseudo anonymized a priori. The 
data produced by the BDA is stored in the 
repository exploiting the Repository privacy 
and security features. Tasks and Workflows are 
protected via Confidentiality and integrity 
measures 

G-REQ13  5: 
Authentication  
6: Authorization  

EVOTION platform 
MUST allow access to 
structured data only to 
authorized person  

BDA API requires Authentication/Authorization 
token provided by the Security Module as the 
rest of EVOTION Components 

G-REQ14  10: Security  EVOTION platform 
SHOULD not to keep 
data saved locally in a 
permanent buffer  

While processing we avoid the use of 
permanent buffers outside the repository. 

G-REQ15  2: Separation of 
data  
5: 
Authentication  
6: Authorization  

EVOTION platform MAY 
provide different level of 
data obfuscation 
depending on the level 
of authorization  

BDA supports obfuscations via pre-processing 
of data. 

G-REQ16  10: Security  
5: 
Authentication  
6: Authorization  
8: Transparency  

EVOTION platform MAY 
provide a “brake the 
glass scenario” for 
emergency situation.  

Emergency situation can be handled using the 
backend Dashboard requiring administrative 
access. 

G-REQ17  10: Security  
5: 
Authentication  
6: Authorization  
11: 
Accountability  

EVOTION platform 
SHOULD provide CRUD 
interface and API 
preserving privacy and 
security  

The API are implemented to preserve privacy 
and security. They use 
authentication/authorization token and 
encrypted channel. They are defined to fulfil 
privacy by design, for instance, not offering 
inspections that are not permitted. While 
integrated the security features will be 
enhanced. 

G-REQ26  10: Security  EVOTION BDA MUST 
process all the date 
confidentially  

The processing of the data is kept confidential, 
still internal to the BDA Engine, no external 
services are used and no data are saved locally. 
The only available information are notifications 
of percentage of completeness and the 
intermediate and final results available and 
protected at Repository level. 
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G-REQ27  1: Minimize 
personal data  
8: Transparency  

EVOTION BDA MUST 
provide adequate level 
of privacy  

The BDA is a mere executor, the model are 
designed to be privacy preserving and the 
transformation into an executable workflow 
will maintain this property. In addition no local 
data are stored outside the Repository as well 
as no external untrusted libraries is used. 

G-REQ28  10: Security  
1: Minimize 
personal data  
3: Aggregation 
of data  

EVOTION BDA SHOLD 
not keep local copies of 
the data unprotected or 
permanent  

No permanent copies of data or semi 
processed data are saved locally. 

G-REQ29  8: Transparency  EVOTION BDA SHOULD 
follow the transparency 
regulation while 
computing analytics  

The analytics execution can be monitored 
thanks to the logs collected at API level 
developed in the integration framework 

G-REQ30  10: Security  Integrity of ALL the data 
type both at rest or in 
transit SHOULD be 
guarantee  

At BDA level the integrity of Tasks and 
Workflows are guaranteed by hash integrity 
mechanisms. We enabled the security features 
available for the ”wire Encryption” 

G-REQ31  1: Minimize 
personal data  
3: Aggregation 
of data  
4: Local de-
identification 
and 
anonymization  

ALL components when 
delete sensible data 
SHOULD perform the 
deletion securely 
avoiding data 
scavenging.  

All the deletion of Tasks and Workflows will be 
treated using secure deletion. 

G-REQ32  11: 
Accountability  
2: Separation of 
data  

Data retention policy 
MUST be satisfied by all 
the components storing 
data  

Workflows can be associated to data retention 
policy while tasks are functionalities that 
cannot be removed 

G-REQ33  7: Monitoring 
data access  

EVOTION as a whole 
MAY adopt continuous 
compliance monitoring 
approach supporting 
auditability  

We adopted Moon Cloud and Ranger as a way 
to monitor che compliance to standards and 
regulations such as GDPR 

G-REQ34  3: Aggregation 
of data  
4: Local de-
identification 
and 
anonymization  
8: Transparency  

EVOTION analytical 
models SHOULD be 
design to preserve 
privacy during analysis  

BDA engine is the executor. With this regards it 
will not introduce any privacy leaks while 
executing an analytics. This requirements 
mainly effects PHPDM models and PHPMD 
Transformation Tool 
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4. Implementation 
In the following we describe implementation details regarding the BDA Engine, focusing on the technology 

adopted and the development decisions taken. Additional implementation details at workflows and task level 

are available in Appendix A. 

4.1 BDA Infrastructure 
The BDA has been deployed on top of a virtualization layer enabling the cluster of processing and storing 

nodes. The deployment is based on Ambari version 2.6.1.5 and the list and versions of the deployed services 

are listed as follows. 

• HDFS 2.7.3 
• YARN 2.7.3 
• MapReduce2 2.7.3 
• Hive 1.2.1000 
• Hive 1.1.2 
• HBase 0.16.0 
• Pig 1.4.6 
• Sqoop 4.2.0 
• Oozie 4.2.0 
• Spark 1.6.3 
• Spark2 2.2.0 
• Zeppelin 0.7.3 
• Kafka 0.10.1 

We decided not to have the latest versions but the most stable one providing the functionality required. 

One specific virtual machine is dedicated to the Workflow and Task Catalogues, API module and Backend 

Dashboard. 

4.2 Task Catalogue 
Task Catalogue had been developed in Java version 1.8, using MVC design patterns where, model and 

controller are dedicated to the data validation, task generation and insertion. 

We implement the Catalogue storage using a local BDMS (MariaDB version 5.5.56). We store the 

Implemented Analytic Task in the HDFS filesystem. 

In the following an example of K-Means Task implemented in  Java using Spark Mlib.  

package it.unimi.evotion.tasks; 
 
import java.io.File; 
import java.io.IOException; 
import java.io.Serializable; 
 
import org.apache.commons.io.FileUtils; 
… 
… 
 
public class Kmeans implements Task, Serializable { 

private static final long serialVersionUID = 1L; 
private JavaRDD<Vector> parsedData; 
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private KMeansModel clusters; 
private RDD<Vector> parsedRdd; 
public static boolean isVector(String s) { 

String[] sarray = s.split(","); 
try { 
Double.parseDouble(sarray[0]); 
return true; 
} catch (Exception e) { 
return false; 
} 

} 
public static Vector asVector(String s) { 

String[] sarray = s.split(","); 
double[] values = new double[sarray.length]; 
for (int i = 0; i < sarray.length; i++) { 
values[i] = Double.parseDouble(sarray[i]); 
} 
return Vectors.dense(values); 

} 
static void deleteDir(String dir) { 
try { 
FileUtils.deleteDirectory(new File(dir)); 
} catch (IOException e) { 

 
} 
} 
static double[] concat(double[] u, double[] v) { 

double[] r = new double[u.length + v.length]; 
int i = 0; 

 
for (double a : u) 
r[i++] = a; 
for (double a : v) 
r[i++] = a; 

 
return r; 

} 
private static String toString(double[] a) { 

if (a == null || a.length == 0) 
return ""; 
StringBuffer sb = new StringBuffer(); 
sb.append(a[0]); 
for (int i = 1; i < a.length; ++i) 
sb.append(",").append(a[i]); 
return sb.toString(); 

} 
public void init(Object... params) { 

SparkContext sc = ((SparkSession) params[0]).sparkContext(); 
 

JavaRDD<String> data = sc.textFile((String) params[1], 
1).toJavaRDD(); 

data = data.filter(s -> isVector(s)); 
parsedData = data.map(s -> asVector(s)); 

} 
public void run(Object... params) { 

 
int numClusters = (Integer) params[0]; 
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int numIterations = (Integer) params[1]; 
parsedRdd = parsedData.rdd(); 
clusters = KMeans.train(parsedRdd, numClusters, numIterations); 

} 
public void postProcessing(Object... params) { 

JavaRDD<Object> objCluster = clusters.predict(parsedRdd).toJava
RDD(); 

JavaRDD<Vector> vctCluster = objCluster.map(o -> { 
return Vectors.dense(((Integer) o).doubleValue()); 
}); 

 
JavaRDD<Vector> inCluster = parsedData.zip(vctCluster).map(t -> 
{ 
return Vectors.dense(concat(t._1().toArray(), t._2().toArray())
); 
}); 
JavaRDD<String> csvout = inCluster.map(v -> { 
double[] a = v.toArray(); 
return toString(a); 
}); 

  csvout.saveAsTextFile((String) params[1]); 
((SparkSession) params[0]).close(); 

} 
 
public static void main(String[] args) { 

SparkSession spark = 
SparkSession.builder().appName("Kmeans").getOrCreate(); 
deleteDir(args[1]); 
Kmeans kmeans = new Kmeans(); 
kmeans.init(spark, args[0]); 
kmeans.run(Integer.parseInt(args[2]), Integer.parseInt(args[3])); 
kmeans.postProcessing(spark, args[1]); 
} 

} 

 

The provided example of implemented Task follows the Task Wrapper interface and ingest data from a csv 

file from the file system in the Init method, execute the K-means and format the output again as csv file in 

file system. 

In the following, we provide a screenshot of the Management Dashboard showing the form to add a Task in 

the Catalogue. 
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In the following screenshot, the list of available Implemented Tasks. 

 

4.3 Workflow catalogue 
Similar to the Task Catalogue, the Workflow Catalogue has been developed in Java version 1.8, using MVC 

design patterns where, model and controller are dedicated to the data validation, Workflow generation and 

insertion. The catalogue storage is implemented again using a local BDMS (MariaDB version 5.5.56). We store 

the EDAW in the HDFS filesystem so that they can be executed when needed. 

In the following, an example of Oozie EDAW for the execution of PCA on a dataset followed by a K-Means on 

the selected features. This EDAW is scheduled monthly started from the 30th or April 2018 until 30th of June 

2018. 
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<coordinator-app name="Periodic" frequency="${coord:months(1)}" start="2018-04-30T00:03Z" end="2018-06
-30T00:04Z" timezone="UTC" 
xmlns="uri:oozie:coordinator:0.5"> 
<action> 
<workflow-app name="Cluster_ENVI" 
    xmlns="uri:oozie:workflow:0.5"> 
    <start to="PCA"/> 
    <action name="PCA"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>Spark_PCA</name> 
            <jar>/user/bda/evotion-Task/PCATask.jar</jar> 
            <arg>${Num}</arg> 
            <arg>${ENVI}</arg> 
        </spark> 
        <ok to="K-Means"/> 
        <error to="kill"/> 
    </action> 
    <action name="K-Means"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>Spark_Kmeans</name> 
            <jar>/user/bda/evotion-Task/KMeansTask.jar</jar> 
            <arg>${K}</arg> 
            <arg>${maxiter}</arg> 
        </spark> 
        <ok to="end"/> 
        <error to="kill"/> 
    </action> 
    <kill name="kill"> 
        <message>${wf:errorMessage(wf:lastErrorNode())}</message> 
    </kill> 
    <end name="end"/> 
</workflow-app> 
</action> 
</coordinator-app> 

 

Oozie workflows will be produces by the PHPDM Transformation tool in order to satisfy stakeholders needs. 

Oozie is also used for pre-defined Workflows, in that case they can be defined using the Management 

Dashboard workflows definition tool and then added to the BDA using the Workflow Catalogue. 

In the following a screenshot of the Dashboard related to adding a new Workflow. We note that for Policy 

Maker workflows the PHPDM Transformation Tool interact directly using the API while the form is just to 

insert pre-defined workflows manually. 

http://www.h2020evotion.eu/


www.h2020evotion.eu  Page 54 

 

In the following the list of the available workflows in the Catalogue. 

 

4.4 Workflow Manager 
Workflow Manager is implemented based on Oozie API (v4.2)20, which permits to schedule Workflows and 

monitor their execution. When completed, the results of a given Workflow are saved into the EVOTION 

Repository with a table name including the DAW, EDAW, and Oozie Job ID. The Workflow Manager handle 

all the possible state of an Oozie Job (i.e., a workflow in execution), and the relative commands like submit 

to add a workflow to the schedule without starting it, start to start it, kill to terminate and remove from the 

schedule etc. 

                                                           
20 https://oozie.apache.org/docs/4.2.0/WebServicesAPI.html 
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4.5 Backend Dashboard 
The Backend Dashboard is based on Java JSP web application with JQuery and AJAX for API calls to EVOTION 

components like the security manager for authentication/authorization and BDA Engine to access the 

Catalogues.  

It includes a link to the Infrastructure Administrative Dashboard which is based on Ambari (screenshot in the 

following) 

 

 

4.6 API Module 
The API Module is developed using Java Jersey (JAX-RS 2.1/Jersey 2.26) input and output parameters are in 

JSON format extension for Jersey. At each call, input and output parameters are validated, authentication 

and authorization are enforced. In the following we provided some screenshots of our REST API 

implementation using swagger. More specifically the set of APIs for Tasks and the set of APIs for Workflow. 
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In the following we also provide the models as they are in swagger. 
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In the following for completeness we also provide screenshot showing the API related to add an 

implementation of a given task that in REST is a post, and find a specific workflow in the catalogue, that is a 

get according to REST paradigm. 
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Swagger API provided documentation with is of a great help for integration and as a way to keep API 

interface under control.  
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5. Use cases 
For EVOTION Stakeholders, interacting with the BDA is possible through the Dashboard, which might be used 

to trigger computations. In the following, we present some relevant use cases with interactions with related 

EVOTION components. 

5.1 Policy making EDAW Use cases 
The overall purpose of the following use cases is to support Policy Makers in triggering Big Data Analytics 

Workflows during the policy making process. 

USE CASE NAME: Execute a given EDAW 

ACTOR: Policy Maker via Dashboard 

PRECONDITIONS: The Policy Maker interacts with the Dashboard and the PHPDM Specification 
tool to define a PHPDM model instance. This model instance contains a DAW expressing a 
Workflow to be executed. 

POSTCONDITIONS: The results of an EDAW are written in the Repository and could be either 
accessed by a Policy Maker or further elaborated by the DSS. They can also be the input 
for subsequent EDAWs 

FLOW OF EVENTS 

1. The DAW is transformed by the PHPDM Transformation tool into EDAW 

(a) Interact with the BDA Engine searching for available implementation for 
all requested tasks (FindTask()). 

(b) In case of positive transformation an EDAW is generated. 

2. The PHPDM Transformation tool ask the BDA to load the new EDAW (AddWorkflow),  
together with the scheduling preferences and parameters for each of the 
involved Tasks. 

3. It receives back the ID of the EDAW identifying it into the Workflow Catalogue. 

4. The BDA Engine adds the EDAW to the schedule, according to the preference and 
using the EDAW ID (AddEDAWJob). 

5. During the execution, the EDAW notifyies the Dashboard about each step 
completion and contacts the Ontology Manager to update the model with 
references to intermediate/final results. 

(a) The BDA Engine stores intermediate and final results into the Repository 
and communicates the link where the results are available.   

Notes: 

(a) This use case takes place during the process of producing a PHP. 

(b) This step takes place through the Dashboard. 

(c) At each schedule, the EDAW execution starts from step 5. 

(d) Storage format or the EDAW output is dictated by the PHPDM Model Instance 
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USE CASE NAME: Stop a running EDAW 

ACTOR: Policy Maker via Dashboard 

PRECONDITIONS: The EDAW to be stopped must be running, otherwise no effect is produced 

POSTCONDITIONS: When stopped, an EDWA executes a rollback and will be re-executed 
according to the scheduling 

FLOW OF EVENTS 

1. Via Dashboard, a Policy Maker can stop a running Analytic Workflow that she had 
previously lunched.  

2. The Dashboard interacts with the BDA API to stop the execution of the specific 
EDAW (StopWorkflow). 

3. Stopping an EDAW will not remove it from the scheduler, which will re-execute 
it according with scheduling preferences. 

(a) The API calls the Workflow Manager to stop the execution 
(StopRunningEDAWJob).   

4. Rollback functions are executed to remove intermediate results 

5. At the next scheduled execution, the EDAW will start as a new process   

Notes: 

(a) This step takes place through the Dashboard. 

(b) Stopping complex and computational intensive Workflows is useful to free resources or to terminate 

unwanted execution 

 

USE CASE NAME: Remove an EDAW from the Workflow Catalogue 

ACTOR: Policy Maker via Dashboard 

PRECONDITIONS: The EDAW to be removed must be in the Workflow Catalogue, otherwise the 
action has no effect 

POSTCONDITIONS: The removal of an EDAW removes also all associated scheduled processes 

FLOW OF EVENTS 

1. Via Dashboard, a Policy Maker can remove a given EDAW which is no more needed.  

(a) EDAW is associated to a PHPDM model instance. 

2. The Dashboard interacts with the API asking the deletion of the given EDAW from 
the Catalogue (RemoveWorkflowInstance). 

3. If the EDAW is running, it is stopped first and then removed from the Catalogue 
and from the scheduler. 

Notes: 
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(a) This step takes place through the Dashboard. 

(b) Useful when some of the triggered analytics are no more useful for a specific PHPDM evaluation 

 

USE CASE NAME: Remove all EDAWs relative to a specific DAW from the Catalogue 

ACTOR: Policy Maker via Dashboard 

PRECONDITIONS: The EDAWs to be removed must be in the Catalogue otherwise the removal 
has no effect 

POSTCONDITIONS: The removal of the EDAWs removes also all scheduled processes associated 
with them 

FLOW OF EVENTS 

1. Via Dashboard, a Policy Maker asks to delete a certain DAW; 

2. The Dashboard, interacting with BDA APIs, requires to remove all EDAWs from the 
Catalogue (RemoveWorkflowModel) corresponding to the DAW to be deleted    

(a) All EDAWs selected for removal should be stopped, if running, and then 
deleted from the Catalogue and the scheduler. 

Notes: 

(c) This step takes place through the Dashboard. 

(d) Useful when all of the triggered analytics are no more useful for a specific PHPDM evaluation 

(e) It implicitly stops all EDAWs relative to a given DAW and removes them from the Catalogue. 

 

USE CASE NAME: Re-execute the EDAW with different parameters 

ACTOR: Policy Maker via Dashboard 

PRECONDITIONS: The EDAW must be listed in the Catalogue, otherwise the action produces 
no effect 

POSTCONDITIONS: The modified EDAW substitutes the previous one in the Catalogue 

FLOW OF EVENTS 
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1. Via Dashboard, a Policy Maker selects a previously executed DAW and triggers a 
new execution by specifying new parameters.  

2. The Dashboard interacts with the API asking the modification of the given EDAW 
(ModifyWorkflow), for instance, by incrementing the maximum number of iterations 
relative to a k-means, or the number of clusters K 

3. When the BDA receives the request, the corresponding EDAW is stopped if 
running, then the BDA: 

(a) Removes the EDAW from the schedule (RemoveEDAWJob) 

(b) Modifies the EDAW in the Catalogue as requested 

(c) Triggers re-execution of the modified EDAW (ExecuteWorkflow) according 
to the scheduled parameters (AddEDAWJob) 

 

Notes: 

(a) This step takes place through the Dashboard, but can be used by the PHPDM Transformation Tool to 

change the implementation of a given EDAW if needed 

(b) It is used until the evaluation process converges to the final policy 

 

USE CASE NAME: Add new Implemented Analytic Task 

ACTOR: EVOTION BDA Administrator - Data Scientist via Backend Dashboard 

PRECONDITIONS: The software library adopted in the task must be first installed in the 
BDA Infrastructure 

POSTCONDITIONS: none 

FLOW OF EVENTS 

1. Let us consider the situation where, for supporting a given scenario, a 
specific Analytic Task is required but it is not yet listed in the BDA Task 
Catalogue. 

2. The PHPDM Transformation tool interacts with the BDA Engine searching for an 
implementation of the specific Task (FindTask) 

3. No Implementation is available 

(a) The DAW cannot be transformed into an EDAW until an implementation of 
the missing Task is provided. 

4. EVOTION Data scientist, via Backend Dashboard, add an implementation of the 
Analytic Task (addTask) wrapped into Task Wrapper as requested for 
compatibility with EVOTION BDA.  

(a) The PHPDM Transformation Tool is now able to transform the PHPDM model 
into the relative EDAW 

 

Notes: 

(a) Administration activities to ensure the presence of all implemented tasks needed 
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5.2 Other use cases 
For clinical and patient use cases, the interaction with the BDA is minimal because Analytics are pre-defined 

and only their parameters can be modified. Only the EVOTION Administrator can modify a pre-defined EDAW 

using the Backend dashboard. We remark that these use cases are expected to evolve during the project as 

the EVOTION platform integration proceeds. 

USE CASE NAME: Visualize data 

ACTOR: Clinicians via Dashboard 

PRECONDITIONS: All available visualization capabilities must have a corresponding 
Zeppelin notebook 

POSTCONDITIONS: The integration of Zeppelin in the EVOTION Dashboard 

FLOW OF EVENTS 

1. A Clinician accesses the Dashboard page where visualization is available: 

(a) Dashboard interacts with the BDA for retrieving the corresponding 
Zeppelin Notebook. 

(b) The Zeppelin notebook contains the features to plot the requested 
results. 

Notes: 

(a) This step takes place through the Dashboard. 

(b) Zeppelin-based analytics are pre-loaded EDAW based on Zeppelin framework 

 

USE CASE NAME: Visualize correlation of HA usage with collected data 

ACTOR: Clinicians via Dashboard 

PRECONDITIONS: The relative EDAW must be scheduled 

POSTCONDITIONS: none 

FLOW OF EVENTS 

1. A Clinician interacts with the Dashboard page for this use case: 

(a) Dashboard interacts with the EVOTION Repository where the last 
evaluation results are stored. 

(b) BDA recomputes the results according to the scheduling preference. 

2. If available through the Dashboard, the Clinician can ask for an immediate 
refresh: 

(a) This triggers re-execution of the relative EDAW (ExecuteWorkflow) 

Notes:  

         (a) This step takes place through the Dashboard.  
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6. Demonstrator 
This report is part of the D5.5 deliverable which also contains the source code of all the components 

developed that constitute the BDA Engine. A video showing the functionality of the administrator Backend 

Dashboard is also released. We remark that the dashboard will not be offered to the final user but just to the 

EVOTION super Administrator in order to handle Workflows and Tasks and to inspect and manage BDA jobs 

and infrastructure. 

The video is available here: http://h2020evotion.eu/?ddownload=692 

The source code is available here: http://h2020evotion.eu/?ddownload=699 

The BDA Engine developed in this deliverable will be integrated at the CITY premises in order to provide 

access at consortium level as agreed in the consortium in accordance with the relative security and privacy 

considerations.  

 

7. Conclusions 
This report is part of the EVOTION deliverable D5.5 and describes the design and implementation of the 

EVOTION Big Data Architecture and the components interacting with it. 

The BDA documented in this report represents a complete, pre-final deployed version of the EVOTION BDA 

engine. This version includes all architectural components for supporting the execution of workflows 

containing analytic tasks and directives derived from a PHP model instance specified as a DAW through the 

PHP Specification tool and translated into an EDAW by the PHPDM Transformation tool.  

The features of the implemented EVOTION BDA includes also a tight integration with the EVOTION data 

repository and the APIs needed by other components in order to interact with the BDA. Mechanisms to 

support notification of ongoing analytic executions and the production of final results have been 

implemented, as well as notifications and visualization support for the EVOTION Dashboard to let policy 

makers and clinicians visualize the results and require new executions. 

Further functionalities are to be included and extended in future developments as the project progresses 

towards a full integration. Extensions that have been planned are related to i) tasks to improve the set of 

available algorithms, ii) pre-defined workflows to support additional functionalities that may emerge after or 

during the integration, iii) security services in case they are needed while the BDA is integrated with the rest 

of the EVOTION platform. 

This document is complemented by a video demonstrating some scenarios of execution and the backend to 

support the definition and deployment of Tasks and Workflows and an access link to the source code 

repository. These artefacts and this report constitute the deliverable D5.5. 
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Appendix A: Preliminary Workflows Definition 
 

In the following, we provide some of the initial modelling of EVOTION analytic workflows. We divide the 

workflows in Policy making workflows and Clinical and Patients-related workflows. 

When needed for the following scenarios, we used synthetic datasets for testing purposes in accordance to 

the recommendation of D9.3 related to ethics and privacy. In some other cases, we use real datasets 

anonymized related to HA data only to have more realistic scenarios. 

We note that during the evolution of the project we will tune them and restructured them for finding the 

most suitable approach for each of specific EVOTION domains, therefore the clinical/statistical validity of the 

following solutions, even if extracted from literature in some cases, are not currently verified and out of the 

scope of this deliverable.  

Workflows for Policy Making Scenarios 
These types of workflows are modelled by a policy maker using the EVOTION PHPDM Specification tool and 

the EVOTION PHP language. The portion of the obtained PHPDM model instance related to BDA workflow, 

i.e. the DAW, is transformed by the PHPDM Transformation tool into EDAW an added to the Workflow 

Catalogue to be executed. 

Let us consider for example the scenario related to “Addressing Barriers to HA Use” modelled in D4.1. The 

scope is to explore whether the (i) Occupation, (ii) Education level and (iii) Age of HA users affects their daily 

usage. Following the PHPDM model in D4.1 the EDAW generated after a conversion can be modelled as 

follows 

 

It is a sequence of two Tasks, one is a processing Task selecting the source of data and the second one is a 

clustering task. There can be more than one Processing Task in order for instance to clean the data from 

outliers or to select a specific subset. Similarly, there can be more than one Analytics Tasks like statistical 

analysis to evaluate correlations of factors. In general, a policy making process is made by a number of 

different consecutive analyses to let policy makers infer something from the data to model the policy. 

These analyses are transformed to workflows via PHPDM Transformation tool. 

Workflows for Clinical and Patient-related Scenarios  
Our BDA Engine will also support a number of different scenarios where the EDAWs are not dynamically 

generated by the Transformation tool, but instead pre-loaded and scheduled for supporting recurrent 

analytics like in case of Clinical and Patients scenarios, or for managing complementary tasks of the BDA. 

Some of these pre-loaded EDAWs refer to aggregation-oriented workflows for visualization purposes 

Requirement Description 

FR(CLIS)37 Manage HA usage with problems occurred, ratings provided and corresponding noise 
recorded  
 

FR(CLIS)48 Manage and visualize a detected event record 

http://www.h2020evotion.eu/


www.h2020evotion.eu  Page 68 

FR(CLIS)77 Visualize aggregated data sets 

FR(CLIS)78 Visualize HA usage data with respect to various noise parameters 

 

These aggregation/visualization workflows can be provided with processing Task and exploiting Zeppelin-

based EDAW at EVOTION Dashboard level. Normally, the principal scope of these simple visualization 

oriented EDAWs is the prototyping of analytics. 

FR(CLIS)77: Visualize aggregated data sets [aggregation and simple pre-processing] 

For the shake of simplicity let us consider as dataset, the real but pseudo-anonymized data on 

HA_ENVIRONMENT_DATA and TIME_PERIOD tables in the EVOTION Repository. Aggregation and 

visualization EDAWs have almost a similar structure made with one or mode Processing Tasks for aggregation 

and then a visualization of the final result.  

Let us consider the relation between the HA profile and the Environment (i.e., quiet, noise, speech, speech 

in noise). An EDAW can be structured as follows: 

 

Given this EDAW different aggregations and types of visualization can be provided. In the following an 

histogram showing the aggregation per Environment and per Profile. 

 

Form this plot is quite clear that the quite environment is the mostly frequent for all the profile 

FR(CLIS)78: Visualize HA usage data with respect to various noise parameters [aggregation and simple pre-

processing] 

All the HA daily usage related EDAWs share the HA usage computation processing Task, that compute the 

daily usage given the data in the HA TIME PERIOD table.  

More specifically let us consider a workflow for HA usage per patient. To make it effective in terms of 

visualization, a subset of patients must be selected. Let us consider a simple random selection of a subset of 

patients. The workflows can be structured as follows. 
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Given this EDAW the distribution of HA daily usage on 27 randomly selected patients can be visualized as 

follows using both the two different view 

 

 

Let’s now consider to include audiograms as a way to cluster patients. We aggregate patients with similar 

audiograms and provide the same aforementioned analysis but at audiogram clustering level. Let us assume 

that audiogram classification has been executed a priori (see below for details). In the following we aggregate 

audiograms in 7 similarity clustering and then compute the average HA usage for all the patients belonging 

to each cluster. 

 

 

HA usage can be also used in relation with other more personal characteristics like educational level, age etc. 

In the following an example of average plot of HA Delay usage, grouped by the three educational levels 

labelled as 1, 2 and 3 directly written using Zeppelin.  
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MEAN average_ha_daily_usage on edu_level 
 
val dataText = sc.textFile(z.input("file")) 
 
case class Data(patient_id: Integer, ghabp_q1: Integer,  ghabp_q2: Integer, ghabp_q3: 
Integer, ghabp_q4: Integer, ghabp_q5: Integer, 
 ghabp_q6: Integer, ghabp_q7: Integer,moca_total: Integer, speech_in_noise: Integer, 
average_ha_daily_usage: Integer, edu_level: Integer, 
 engagement_in_at: Double, periodic_follow_up: Integer) 
 
val data = dataText.map(s => s.split(",")).filter(s => s(0) != "PATIENT_ID").map( 
    s => Data(s(0).toInt, s(1).toInt, s(2).toInt, s(3).toInt, s(4).toInt, s(5).toInt, 
s(6).toInt, s(7).toInt,  
        s(8).toInt, s(9).toInt, s(10).toInt, s(11).toInt, s(12).toDouble, s(13).toInt 
        ) 
).toDF() 
data.registerTempTable("data") 
 
var groupby=""; 
var selgroupby=""; 
if(!z.input("groupby").equals("")){ 
    groupby=" GROUP BY "+z.input("groupby")+" ORDER BY "+z.input("groupby"); 
    selgroupby=z.input("groupby")+","; 
} 
 
val df = sqlContext.sql("SELECT "+selgroupby+z.input("stat")+"("+z.input("field")+") FROM 
data"+groupby) 
df.coalesce(1).write.option("header", "true") 
  .csv(""+z.input("location")) 

 

The following figure shows the results of the execution, where the dependencies between educational level 

and the average HA usage is not evident. 

  

 

 

Other pre-loaded EDAWs refer to specific analysis on patient’s data: 

Requirement Description 

FR(CLIS)36  Correlation of HA usage with collected data  

FR(CLIS)42  Analyse END or BHD parameters and automatically respond to them by changing the 
fitting profile  
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FR(CLIS)61  Analyse data and suggest combination of factors affecting TTS and NIHL episodes  

FR(CLIS)82  Analyze the responses to the auditory training tests  

FR(CLIS)95  Analyse captured events from the patient’s devices in relation to the patient responses 
in the questionnaires  

FR(CLIS)103  Analyze sensors’ and HAs’ data  

FR(PSOS)139  Determine combination of factors (noise levels, duration of exposure, other physiological 
data) associated with TTS/NIHL episodes  

FR(PSOS)144  Analyse issues, concerns and problems with hearing aid reported by HA users 

 

This workflows for patients/clinicians analysis require specific analytics to be triggered periodically. These 

permanent EDAWs can be tuned by changing operational and  scheduling parameters to fit the specific needs.  

FR(CLIS)36: Correlation of HA usage with collected data - [Statistical Analysis] 

The scope is to analyse the correlations of HA usage with noise exposure, environment (END 1,2,3) and 

activities as recorded by the sensors (working, driving, watching TV-BHD 1,2,4,5) of a group or a given patient. 

This is the typical analysis requiring Statistical Analytics. More specifically we consider One-Way Analysis of 

Variance (ANOVA), that is a technique for studying the relationship between a quantitative dependent 

variable and a single qualitative independent variable. In this case, the quantitative variable is the HA usage, 

while the qualitative variables are respectively noise exposure, environment and activities. 

The workflow is composed of 3 parallel execution of One-Way ANOVA for which all the detailed statistics are 

provided. The correlation is than evidenced by the P-values computed. 

 

 

In Oozie parallel jobs can be obtained using fork join construct. The relative Oozie workflow extract for the 

above EDAW is the following. 

<workflow-app name="HA_Usage_ANOVA" 
    xmlns="uri:oozie:workflow:0.5"> 
    <start to="Cleaning"/> 
    <fork name="fork0_1"> 
        <path start="SelectBHD"></path> 
        <path start="SelectNoise"></path> 
        <path start="SelectEnv"></path> 
    </fork> 
    <join name="join1" to="end"></join> 
    <action name="Cleaning"> 
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        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>ProcessingTask_Cleaning</name> 
            <jar>/user/bda/evotion-task/CleaningTask.jar</jar> 
            <arg>…</arg> 
        </spark> 
        <ok to="fork0_1"/> 
        <error to="kill"/> 
    </action> 
    <action name="SelectBHD"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>SelectBHD</name> 
            <jar>/user/bda/evotion-task/SelectionTask.jar</jar> 
            <arg>…</arg> 
        </spark> 
        <ok to="ANOVABHD"/> 
        <error to="kill"/> 
    </action> 
    <action name="ANOVABHD"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>OneWayANOVA3</name> 
            <jar>/user/bda/evotion-task/OneWayANOVA.jar</jar> 
            <arg>…</arg> 
        </spark> 
        <ok to="join1"/> 
        <error to="kill"/> 
    </action> 
    <action name="SelectNoise"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>ProcessingTask_Dataselection</name> 
            <jar>/user/bda/evotion-task/SelectionTask.jar</jar> 
        </spark> 
        <ok to="ANOVANoise"/> 
        <error to="kill"/> 
    </action> 
    <action name="ANOVANoise"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>OneWayANOVA2</name> 
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            <jar>/user/bda/evotion-task/OneWayANOVA.jar</jar> 
            <arg>…</arg> 
        </spark> 
        <ok to="join1"/> 
        <error to="kill"/> 
    </action> 
    <action name="SelectEnv"> 
        <spark 
            xmlns="uri:oozie:spark-action:0.2"> 
            <job-tracker>${resourceManager}</job-tracker> 
            <name-node>${nameNode}</name-node> 
            <master>yarn-cluster</master> 
            <name>SelectEnv</name> 
            <jar>/user/bda/evotion-task/SelectionTask.jar</jar> 
            <arg>…</arg> 
        </spark> 
        <ok to="ANOVAENV"/> 
        <error to="kill"/> 
    </action> 
… 
    <kill name="kill"> 
        <message>${wf:errorMessage(wf:lastErrorNode())}</message> 
    </kill> 
    <end name="end"/> 
</workflow-app> 

  

This is clearly a simple way of statistically evaluate correlation that can be enhanced with other investigations, 

for instance using a single workflow implementing a Three-Way ANOVA enabling also the two-way 

interaction evaluations to have a complete view on the phenomenon.  

FR(CLIS)61 and FR(PSOS)139: suggest combination of factors affecting TTS and NIHL - [Data Mining 

Analysis] 

The scope of FR(CLIS) 61 is to analyse data and suggest combination of factors affecting TTS and NIHL 

episodes (noise levels, duration of exposure, other physiological data).  

 

In this scenario, audiograms need to be classified as pre-processing before starting the Analytic task. Bisgaard 

et al. (Bisgaard et al., 2010)  defined a number of standard audiograms, which cover the entire range of 

audiograms met in clinical practice. Being able to map a given audiogram to one of the list of standard ones 

is of a paramount importance for many scenarios including this one. To implement this task a number of 

solution is available in literature like semi-supervised clustering approaches (Yoder et al., 2017). The scenario 

is much more simple due to the fact that we just have one representative per audiogram, therefore distance 

based approach is suitable. Therefore, the audiogram classification is based on the minimal distance 

computations between audiogram vectors. 

We then use a Logistic regression to inspect the combination of factors using an approach similar to the one 

in Bhatt et al. (Bhatt et al., 2017) 
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The aforementioned approach can be used also for FR(PSOS)139, but as a patient scenario it can be modified 

in a more personalized way, for instance by adding prediction capabilities to notify dangerous trend 

increasing the hearing loss. This model for predicting hearing loss situations can be constructed also with the 

future goal of helping clinicians in the diagnosis of hearing loss (Lee et al., 2010). First, the audiogram shape 

as well as other data can be clustered into groups. Then using Silhouette, the clusters can be labeled and 

used as training set for a classification purposes based on Naïve Bayes (NB)  classification similarly to the 

approach in Majumder et al. (Majumder el al., 2014) .   

FR(CLIS)42: changing the fitting profile – [Streaming/Batch Data Mining]  

It is focused on Analyse END or BHD parameters and automatically respond to them by changing the fitting 

profile. This case points to a streaming scenario. Let us consider a more complex scenario based on a set of 

workflows aimed at providing fitting profile changes suggestions.  

The idea is: i) clusterize the population of patients into classes of risk using personal behavioural data and 

audiograms, ii) for each class, develop a specific classification algorithm taking as input the stream of sensors 

data and produce as output suggestions to change the fitting profile. This is based on the idea that the 

changing of fitting profiles should depend not only on the sensors data but also on the risk class of a patient. 

This approach requires batch learning for class of risk clustering (low frequency) and micro-batch learning for 

fitting profile (high frequency), one per class of risk. It also requires a stream classification workflow that, 

given the data from an input Kafka queue, is able to identify the risk cluster (prediction) and redirect the data 

stream and the classification feedback to the correct learning classifier (i.e., the one for that risk class) for 

update. 

The risk clustering workflow to build the model for clustering patients based on personal data like age, 

education level, occupation, but also last available audiometry (or a set of audiometry), can be structured as 

follows: i) preliminary pre-processing for selection of data, ii) classification of the audiometry iii) k-means 

enhanced with elbow method to find the best number k of clusters. 

 

This workflow is scheduled with low frequency since it works on high latency data like personal data. The 

output of this workflow is a clustering model that will be then used to classify each patient with the relative 

cluster. 

The fitting profile learning workflow is aimed at learning a model to suggest fitting profile for a given class of 

patients. It is trained mainly with the sensor streams and patient (using mobile device) or clinician (during 

the follow-up visit) feedbacks. The learning model evolves while additional sensors data will be acquired as 

well as feedbacks collected. This workflow can be structured as follows: i) pre-processing on the queue that 

already contains data for a specific cluster of patient only, ii) windowing or aggregation of data to make them 

coherent in the given time frame, iii) a decision tree that will be trained with the scope of deriving the most 

suitable profile given the data received.  
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This workflow is scheduled with a higher frequency compared with the previous clustering one. Each of these 

workflows read data on a specific queue and accumulate them to be used to update the training model. 

We remark that just the data belonging to cluster k is used to train the fitting profile model of class k.  

The complete workflow for profile suggestion is made of predictors and receives as input the last available 

clustering model, and the data from the HA sensors and mobile device. It first classifies patients to the correct 

cluster k then it passes all the data to the fitting prediction that uses the relative decision tree for that specific 

k. The decision tree generates a decision which could be a change of the patient profile to another one. 

 

Figure 12: Schema for the workflow for profile suggestion and a mapping to the Lambda Architecture. In 

orange the streaming workflows, in black the classification using high latency Clustering model and in blue 

the high frequency decision tree classification for the given cluster n. 

 

These prediction workflows are normally triggered when new amount of data is available in a queue. They 

are structured as consumer of the queue. In EVOTION we use Kafka queue. Each pre-defined EDAW doing 

stream processing on the Kafka queue are similar to the normal EDAW in terms of structure with the 

difference that they are always running processes fetching data from the queue. All learning models 

produced can be saved in the repository or in the HDFS any time an update is required. 

The architecture just described is a typical approach following the Lambda architecture way of producing 

analytics where the model is batch and the evaluation/prediction is a stream. 

This approach can be useful also for other scenarios like  CLIS.3 “Ask the expert” hearing aid fitting or PSOS.3 

“Self-testing of hearing and self-adjustment of hearing aids”. 

We note that the architecture is ready to provide additional streaming features. We also note that the 

streaming capabilities provided can be emulated also using micro-batch and frequent scheduling to cope 

with the actual scenarios. 
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